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Abstract

The study presented here intends to provide ideas and theoretical principles re-
quired to simulate room transfer functions with directivities on the basis of modes,
via the so-called Room Modes Method (RMM). The lossless Helmholtz equation
in the Cartesian coordinate system is the starting point for the considerations made
here. It provides the transfer function between source and receiver as the in�nite
sum of room modes and their individual resonant behavior. Simulation to in�nity
is only possible in theory and must therefore be band limited. It becomes possi-
ble to describe the point-to-point transmission by a limited number of room modes.

The well-known Image Source Method (ISM) is used as a reference in order
to compare the performance achieved and accuracy of the RMM. Both methods
deliver the perfect solution when summed over in�nitely many room modes and
image sources, respectively. A direct comparison between the two methods is for
this very reason of great interest.

The main focus of this thesis lies in employing sources and receivers having ar-
bitrary directivity patterns, which yields directional room transfer functions. This
can be done by weighting the Green's function with the spherical harmonics for the
ISM or by employing the multipole characteristics in the RMM. The �rst ones can
be directly evaluated and applied, while the multipole characteristics imply direc-
tional derivatives on the series representation of the Green's function. Ultimately
both variants are compared in the spherical harmonic domain, by conversion from
multipole to spherical harmonic far-�eld directivity patterns.

General directivity patterns are created by a linear combination of multipoles
or spherical harmonics. Finally, simulations of directional room transfer functions
are carried out for both methods and are made available for a comparison and
evaluation of their performance. The accuracy of both methods is likely to stand
in direct relationship to their truncation in space or the modal domain, respectively.
The in�uence of this truncation constitutes the main problem studied in this work.



Zusammenfassung

Diese Arbeit beschäftigt sich mit der Simulation von Raumübertragungsfunk-
tionen unter Anwendung von Raummoden in Räumen mit schallharten und paral-
lelen Wänden. Ausgangspunkt ist die verlustlose Helmholtz-Gleichung im kartesis-
chen Koordinatensystem, welche die Raumübertragungsfunktion von Quellpunkt
zu Empfangpunkt durch eine unendliche Summe frequenzabhängiger Raummoden
liefert. Eine solche Berechnung ist nur theoretisch denkbar und muss in der Um-
setzung bandbegrenzt werden. Mit einer begrenzten Anzahl von Raummoden ist
es nun möglich die Punkt-zu-Punkt-Übertragung zu beschreiben.

Die gängige Spiegelquellen-Methode ist als Referenz eingesetzt worden. Sie
stellt einen Referenzpunkt dar, um die erreichte Leistung und Genauigkeit der
moden-basierten Simulationen mit Richtwirkung zu beurteilen. Beide Methoden
liefern, wenn summiert über unendlich viele Raummoden bzw. Spiegelquellen, die
perfekte Lösung. Ein direkter Vergleich ist aus diesem Grund von groÿem Interesse.

Der Schwerpunkt liegt bei der Anwendung von Richtcharakteristiken, welche
Simulationen von Raumimpulsantworten mit Richtwirkung ermöglicht. Diese Winke-
labhängigkeit kann für die Spiegelquellen-Methode durch eine Gewichtung der
Green'schen Funktion mit Kugel�ächenfunktionen, die nach Evaluierung direkt
einsetzbar sind, realisiert werden.

Im Gegensatz dazu werden Multipole-Richtcharakteristiken bei der Raummoden-
Methode eingesetzt. Dabei wird die Green'sche Funktion in ihrer Reihendarstel-
lung örtlich abgeleitet. Letztendlich sind beide Varianten mit einer sphärischen har-
monischen Analyse verglichen. Die Überführung von Multipol- in Kugel�ächenfunktionen-
Richtcharakteristiken wurde für die Fernfeld-Näherung dieser Funktionen durchge-
führt.

Im Prinzip können Richtcharakteristiken durch eine Linearkombination von
Multipolen oder Kugel�ächenfunktionen beliebig gewählt werden. Schlieÿlich wer-
den Raumimpulsantworten mit Richtwirkung simuliert. Die Genauigkeit beider
Methoden hängt von der Abschneidung, sowohl im Raum als auch im modalen
Bereich, ab und ist gegenübergestellt. Der Ein�uss dieser Abschneidung stellt die
zu untersuchende Problematik dieser Arbeit dar.



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 4

Contents

1 Introduction 6

1.1 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Importance Of Directivity Patterns . . . . . . . . . . . . . . . . . . 9

1.2.1 Directivity Pattern Representations . . . . . . . . . . . . . . . . 10

1.2.2 Truncation Of The In�nite Sums . . . . . . . . . . . . . . . . . 12

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Sources Under Free-Field Conditions 16

2.1 Helmholtz Equation In R3 . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Homogeneous Solution . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Green's Function Of The Free-Field . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Green's function in 1-D . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Free-Field Green's Function in 3-D . . . . . . . . . . . . . . . . 18

2.3 Describing Directivities . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Angular Dependent Solutions To The 3-D Wave Equation In
Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Matrix / Vector Notation Of The Spherical Harmonics And Mul-
tipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Conversion Between Spherical Harmonics And Multipoles . . . . 26

2.3.5 Conversion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Shoebox Shaped Room With Rigid Walls 30

3.1 The Room Modes Method . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Homogeneous Solution . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Non-Homogeneous Solution . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Analogy Between The RMM And ISM . . . . . . . . . . . . . . . . . . . 38

3.3 The Image Source Method . . . . . . . . . . . . . . . . . . . . . . . . . 42



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 5

3.3.1 ISM In Its Time Domain Representation . . . . . . . . . . . . . 46

3.4 Sparse Model Of A Room Response . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Directivity Patterns For Source And Receiver . . . . . . . . . . . 48

3.4.2 Directional Room Responses . . . . . . . . . . . . . . . . . . . . 49

3.5 Arbitrary Directivities . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Spherical Harmonic Characteristics Employed For The ISM . . . . 50

3.5.2 Spherical Harmonics In The Far-Field . . . . . . . . . . . . . . . 51

3.5.3 Multipole Characteristics For The RMM . . . . . . . . . . . . . 52

3.5.4 Far-Field Normalization Of The Multipole Characteristics . . . . 54

3.5.5 Matrix Notation Of The RMM With Multipole Characteristics . . 57

4 Room Response Simulations With Directivities And Comparison 59

4.1 Absorbing Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Re�ection Coe�cient . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Auralization Of Room Modi�cations . . . . . . . . . . . . . . . 61

4.2 Room Impulse Responses And Room Transfer Functions . . . . . . . . . 64

4.2.1 Simulations With The ISM . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Simulations With The RMM . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Direct Comparison Between The RMM And The ISM . . . . . . 69

4.3 Analysis Of The RIR In The SH-Domain . . . . . . . . . . . . . . . . . 71

4.3.1 Energy Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Resume And Outlook 78

Appendices 81

A Green's Function Of A Point Source In Free Field . . . . . . . . . . . . . 81

B Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Energy Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 6

1 Introduction

1.1 Topic

The analytical computation of room impulse responses (RIR) for omni-directional sources
and receivers has been subject of research in numerous publications such as [ASV06,
MBS+08,SSS11,TPKL13] and more generally in [Kut09]. These solutions are valid for
simple geometrical shapes such as rectangular rooms with parallel walls. In extension of
these works, the goal here is to study room transfer functions. In particular, the results
of the Room Modes Method (RMM) for sources and receivers of arbitrary directivity
are compared with those of the well-known and widely used Image Source Method
(ISM). Both methods are realized by truncating their in�nite sums across either the
room modes or image sources.

A truncation in time will determine the number of mirrored sources taken into consid-
eration and thus the accuracy of the computed room response computed with the ISM.
For this method the original source is mirrored in space with respect to every coordi-
nate simulating the wall re�ections of the sound �eld in an enclosed space. The room
responses computed with the ISM provide a good reference for the ones computed with
the RMM. In this method the so-called room modes are used in order to compute the
room transfer function. Here the band limitation occurs in the frequency domain in form
of a cut-o� frequency up to which the room modes are calculated. It is important to
point out the fact that both methods deliver a perfect solution when summed to in�nity
for enclosed spaces with totally re�ecting surfaces and for point sources and receivers.
An expansion with directivities remains the focus of this work.

Room Responses Of Sources And Receivers Of Arbitrary Directivities

The result of applying directivity patterns is an enhancement of the 1-D RIR. The
latter notion refers to a room response measured at the receiver position with an omni-
directional microphone for input signals in the form of an impulse. The whole idea of
computing the acoustical impulse response, as it happens in signal processing, aims at
describing a room via its impulse response h(t). The analogy lies within the fact that
rooms are considered to be linear and time-invariant systems de�ned by their impulse
responses.

Once the room impulse response is known, it can be used for convolution with any �nite
input signal x(t) to obtain the corresponding system response. The next step is thus
to expand the last idea for sources and receivers of arbitrary directivity. Directivities
are exemplarily shown in Fig. 1 in their polar diagram form. As seen in Fig. 9, this
representation can be expanded for the 3-D case by considering the zenith angle too.
Consequently, two angular variables ϑ and ϕ are needed in order to describe the direc-
tivity pattern of sources and receivers in 3-D space.
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The RIR h(t) becomes a directional function h(θR, t,θS) depending on spherical angles,
where the subscript R and S of the angular vectors θ refer to the receiver and source.
The concept of directional room impulse response and not of room impulse response
is from now on valid given the introduction of directional characteristics of the source
as well as the receiver's sensitivity. This fact constitutes an important enhancement and
is one of the primary topics to be studied within the frame of the work presented here.
The compact notation of the angles used above is de�ned by the unit length vectors
θT = [cosϕ sinϑ, sinϕ sinϑ, cosϑ]T and re�ects the relationship between the Carte-
sian and spherical coordinate systems.

A spatial window like the one illsutrated in the left-hand side of Fig. 1 could be used
for describing the source's radiation pattern. In this particular case the source would
radiate sound in one direction mostly. Whether or not sound is radiated in a focused
way depends amongst others on the source's geometry and signal's frequencies. Higher
frequencies will not propagate uniformly in space as soon as the wavelength λ becomes
smaller than the source's dimensions. The polar angle 0� in Fig. 1 represents the orien-
tation of the source and main energy focus. Likewise, the sensitivity of the source can
be determined with a polar function like the one depicted in the right-hand of Fig. 1. 1

A receiver with such a characteristic picks up sound from its orienattion angle mostly,
in this case from the polar angle 180�.
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Figure 1: Typical directivities in polar coordinates.

The room reponses computed in Section 4 do not include the frequency dependent radi-
ation pattern of both sources and receivers as it happens in reality. This would have to
consider the wavelength of the measuring signal, source's and receiver's dimensions as
well as the resulting frequency dependent radiation pattern and sensitivity. This aspect

1. The directivity pattern of the cardioid is a conventional microphone characteristic. It is de�ned
as D(ϕ) = 1

1−cosϕ in its polar representation.
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would represent a major increase of the simulation's complexity and lies outside the focus
of the work presented here. This one remains to study room response simulation with
directivity on the basis of multipoles and spherical harmonics and not to reproduce the
process of sound radiation and reception of real sources and receivers. The outcome can
be understood to be the room response simulation between sources and receivers with
a frequency-independent radiation pattern and sensitivity.

The computation and storage of room responses in the form of h(θR, t,θS) o�ers not
only �exibility for their superposition but provides also, as seen in Section 3.4.1, a good
method for analysing the energy contributions of a source of arbitrary directivity at the
receiver's position with arbitrary sensitivity. The orthonormality property of the spherical
harmonic functions together with a sampling method for the sphere constitute a great
advantage for this task. The sampling strategies employed are treated in Section 2.3.5,
where the bene�t of a spherical-harmonic-based description becomes evident.

The room response of a source and receiver of arbitrary directivities becomes possible by
means of superposition of directional room responses with di�erent radiation patterns
and sensitivities. Zotter describes in [Zot14a] a compact form for the computation of
room responses in this form. The exact notation and computation procedure is described
in Section 3.5.3 as well as the conversion between multipole and spherical-harmonic based
directivities.

Furthermore, the absorbing nature of wall materials is included in order to produce
more realistic results. This can be done for the ISM by applying to each of the delim-
iting surfaces of the room. In this process each individual source contribution receives
a weight depending on the relative position between the mirrored source and the receiver.

While it is relatively simple to consider absorption in the ISM by applying a re�ection
coe�cient 2, the RMM is based on the assumption of massive and rigid walls. 3 For
a simple inclusion of absorption, the computed room transfer function is multiplied by
an exponential attenuation in its time-domain representation (RIR). The main idea for
simulating absorbing walls is taken from [PSJ13] and is treated in Section 4.1. Also, the
reverberation time T60 can be in�uenced by applying di�erent re�ection coe�cients the
way it is shown in Section 4.1.2.

As mentioned before, the room response is to be computed in enclosed spaces with
boundary conditions. These are determined by the geometry of the room itself, which
will typically have a ratio of the so-called shoebox shaped room illustrated in Fig. 2.
Such a room has typically these proportions Lx > Ly > Lz, where the subscript refers
to the coordinate direction.

2. Real-valued coe�cient used to describe the amplitude and phase of a re�ected wave relative to
an incident wave.

3. Rigid walls do not exist in reality, these would have to be in�nitely heavy and sti�.
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Figure 2: Shoebox shaped room with parallel walls.

1.2 The Importance Of Directivity Patterns

The truncated room transfer function in its natural form and using one of both meth-
ods, describes an omnidirectional sound source placed at rs in space being received by
an omnidirectional receiver placed at rr. Here, r is a vector that describes a discrete
point rT = [x, y, z]T in 3-D space. Thus the room responses are valid for point sources
and receivers only. This kind of acoustic bodies have a perfectly omnidirectional char-
acteristic that corresponds to the acoustic monopole. An acoustic monopole in form
of a source radiates sound in the same manner in all directions, meaning no angle is
favoured with respect to another. Analogously, an acoustic monopole receiver picks up
sound equally good independently of the wave's incident angle. However, natural sound
sources will radiate sound di�erently depending very much on their geometry and size
with respect to the wavelength λ and hence to the frequency being radiated given that
c = f · λ. The speed of sound c in air is 343, 15m

s
under standard conditions. 4

In the same way, natural acoustical receivers like a microphone or the human ear 5 feature
a direction-dependent pickup pattern. This means that the waves are picked up di�er-
ently depending on their angle of incidence with respect to the receiver's orientation and

4. Standard conditions for temperature and heat capacity ratio in air are de�ned to be T = 293, 15K
and κ = 1, 402.

5. The directivity pattern of the human ear is described by the frequency dependent head-related
transfer functions (HRTF). For a detailed description of the HRTF and the nature of the human ear
refer to [Goe06] et al.
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position. The wavelength is again an important factor that together with the receiver's
size determine its frequency response characteristic. The latter are presented in form of
polar diagrams like the one found to the right-hand side of Fig. 1 corresponding to the
cardioid microphone. A detailed report concerning the directivity patterns of conven-
tional microphones can be found in [Goe06] et al.

1.2.1 Directivity Pattern Representations

The objective of this work is to simulate room responses for sources and receivers of
arbitrary directivities using both methods mentioned so far, i.e. the RMM and ISM,
respectively. This angle dependency of the wave propagation in space can also be de-
scribed by means of polynomials. The representation enables the creation of arbitrary
directivity patterns by superposition of the polynomials themselves, o�ering a �exible
con�guration of the function's spatial distribution in space. Hence simulations where
both sources and receivers feature an angle dependent radiation and reception of sound
become possible.

With this in mind, an enhancement of the omni-directional radiation pattern becomes
thinkable for the ISM by mirroring the chosen directivity together with the image source.
The image sources are assumed to have an omni-directional characteristic and are de-
scribed, when placed under free-�eld conditions, by the Green's function G = e−ikr

4πr
. 6

Essentially this is done for every image source by evaluating the mirrored function de-
scribing the spatial distribution of G at their set of spherical angles. These are the
zenith ϑ and azimuth ϕ angles as used in the spherical coordinate system in order to
describe, together with the radious r, a point in 3-D space. For this purpose the spher-
ical harmonic functions are chosen, amongst others because of the diversity they o�er
when superimposed but also because of their completeness property they feature given
the fact they form an orthonormal set of functions. The expansion of a point source is
done by multiplying the Green's function by an angle-dependent function as G · fa(θ).
How directivities are incorporated through spherical harmonic functions is treated in Sec-
tion 3.5.1, where their many advantages over other sets of functions become evident.

At this point the spherical harmonics up to the 3rd order are introduced in Fig. 3. The
maximal order NSH determines the number (NSH + 1)2 of spherical harmonics that
exist up to that very order as well as the maximal achievable spatial resolution. The
latter will be more precise the higher the order is. Two indices (n,m) determine the
spherical harmonic function under consideration. The order n takes values between 0
and NSH while the degree ranges for a given order from −n ≤ m ≤ n. Thus the
directivity patterns are implemented by multiplying the Green's function by the spherical
harmonics. The far-�eld approximation as implemented for the simulations in Section 4

6. These functions are named after the British mathematician George Green who �rst developed the
concept in the 1830's. They are used to solve non-homogeneous di�erential equations subject to initial
or boundary conditions.
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read as:

lim
r→∞

G(r) =
e−ikr

4πr
· Y m

n (θ). (1)

(0,0)

(1,−1) (1,0) (1,1)

(2,−2) (2,−1) (2,0) (2,1) (2,2)

Figure 3: Spherical harmonics up to the 3rd order.

For the RMM on the other hand, a di�erent method of generating directivity patterns is
approached. This choice is supported given the solution's form to the problem as seen in
Eq. 15. In this method the sound pressure is described via point sources in free-�eld and
their corresponding Green's function, which stands in direct relationship to the sound
�eld of a monopole source. This fact is of extreme importance because of the well-known
relationship between the monopole and higher order multipoles. The idea is to derive
higher order multipoles out of the monopole characteristic and apply them to the general
solution, i.e. the point-to-point transmission between source and receiver, obtained with
the RMM. How higher order multipoles are generated by multiple derivations of the
monopole with respect to the coordinate axes is treated in Section 2.3.1. For now the
raw formulation of directivity patterns by means of multipole characteristics is given by:

lim
r→∞

G(r) =
e−ikr

4πr
·
(x
r

)l (y
r

)m (z
r

)n

. (2)
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Here the derivatives are carried out by simple multiplications with respect to the deriva-
tive orders (l,m, n). The precise procedure done for the far-�eld 7 is shown in Sec-
tion 3.5.3.

A disadvantage of multipole characteristics is the fact that these functions form an over-
determined basis. This means that more functions are needed when describing a certain
order of multipoles characteristics than, e.g. for spherical harmonics of that same order.

This leans on the fact that
(NMP + 1)(NMP + 2)(NMP + 3)

6
multipoles exist up to

the maximal multipole order NMP . The consequence is already noticeable for 2nd and
remarkable for 3rd order spherical harmonic functions and multipoles. For the latter four
more functions are needed for fully describing the same order.

Nevertheless, arbitrary directivities can be generated by superposition of higher order
multipoles. As seen in Fig. 4, the 1st order multipoles, also called dipoles, feature a
directed beam of the function's distribution in one of the three Cartesian coordinates.
The directivity pattern of the cardioid microphone, shown in the right-hand side of Fig. 1,
can be generated in this way too. The acoustic beam will be oriented in one of the three
coordinates depending on the dipole chosen for its superposition with the monopole
characteristic. For an extensive derivation of the dipoles, quadrupoles and higher order
multipole characteristics refer to [RTB98,Wil99].

The monopole, also known as the 0th moment or (0, 0, 0) multipole, features no angle
dependecy as the spherical harmonic (0, 0) does. As of multipoles of higher orders, they
all hold an angle dependent distribution in space. The advatage of a spherical-harmonic-
based description of directivity patterns next to a multipole-based one is treated in
Section 2.3.4 and concerns the number of functions needed as well as the orthonormal-
ity property the spherical harmonic functions bene�t from.

Adding directivity patterns to both sources and receivers lies in the emphasis of this
work. Both methods are to be studied by means of computer simulations enabling a
detailed comparison of their performance when truncated, the one in time while the
other in frequency. The conversion of multipole- to spherical-harmonic-based directivity
patterns and vice versa represents an important aspect o�ering a valuable enhancement
of room transfer function simulations.

1.2.2 Truncation Of The In�nite Sums

The last subject open to consideration can be approached once the simulation of room
responses with arbitrary directivities is possible. It consists in studying the band limita-

7. The far-�eld is most commonly de�ned as the distance rfar ≈ 2 · λfar. It depends directly on
the signals wavelength λ and thus from its frequency f .
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Figure 4: Multipoles up to the 3rd order. The indices (l,m, n) give the number of
derivations in (x, y, z).

tion applied to both methods, the one in time and the other in frequency, by means of
computer simulations. The in�uence of a truncation in time on the simulation's accuracy
in the frequency domain and vice versa is to be studied. A comparison of both methods
when truncated should facilitate clear and comprehensive results concerning the number
of room modes or image sources needed in order to achieve a certain simulation accu-
rateness.

The relationship between the RMM and the ISM is known from early publications.
In [AB78] the ISM is speci�ed for the �rst time and most notably, its equivalence to the
RMM is discussed. The conclusion drawn is the fact that both methods should deliver
the perfect solution when summed to in�nity. Are both methods equal when applying
directivity patterns to sources and receivers? Also, the resolution aggravation introduced
by the band limitation's choice is to be studied. How accurate are room responses com-
puted with, e.g. 2000 or 3000 image sources? Is there a di�erence at all? Does it
matter if the room response was computed using the �rst 1000 or 2000 room modes?
These are all questions that will be answered within the frame of this work, where the
emphasis lies in the results obtained for room responses of arbitrary directivities.

At present, the modes that emerge in a 2-D plane and their possible combinations for
lmax = 2 are exemplarily illustrated in Fig. 5, where lmax is the maximal integer value
the indices lx and ly can take and D is the dimensionality variable. As a result a total of
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(lmax + 1)D mode combinations are possible. The fundamental frequency of the room
is given by f0 from which the ratio to higher order modes is given.

Figure 5: Modes for the rectangular room with totally re�ecting walls in the 2-D case
for lmax = 2 taken from [Zot14b].

x

y

z

Figure 6: 2-D plane with the image sources (green circles) and receiver (red triangle).
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The same is done for the ISM, where the number of image sources is limited in order
to compute the room response in form of a �nite sum of impulses. Fig. 6 illustrates
how images sources are placed in the 2-D free-�eld around the room in blue. How the
truncation looks for the ISM is discussed in Section 3.3.

1.3 Structure

This work is divided in sections. An introduction to both sets of functions used to de-
scribe directivity patterns and their mathematical principles is given in Section 2. The
translation between them as well as the foundation for describing wave propagation is
also treated in this section.

With this covered the simulation of room transfer functions in rectangular rooms with
parallel walls and main problem is approached. How room responses are computed with
both methods and most importantly how arbitrary directivities are implemented is ex-
plained in Section 3. Also, the far-�eld approximation of both multipole and spherical
harmonic functions is shortly discussed.

What concerns the actual simulation of room responses and its realization by means
of computer simulations is discussed in Section 4 as well as the theory needed in order
to obtain results valid for absorptive wall materials by means of re�ection coe�cients
and exponential attenuations. The obtained results and di�erent evaluation methods are
also presented in this section. Finally, the conclusions as well as possible future work are
discussed and sumarised in Section 5.
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2 Sources Under Free-Field Conditions

2.1 Helmholtz Equation In R3

The starting point of the considerations made in this work is the Helmholtz equation in
the Cartesian coordinate system. Any sound wave can be fully described by the sound
pressure p and the particle displacement velocity υ. Together they describe the instanta-
neous displacement the medium particles undergo through sound wave propagation. An
extensive description of this phenomenon can be found in [Wil99,Kut09, Goe06] et al.
The relationship between the time dependent sound pressure and local velocity is given
in Eq. 3. It states that an increase of sound pressure equals a decrease of all three local
velocities

ṗ = −K
[
∂

∂x
υx +

∂

∂y
υy +

∂

∂z
υz

]
= −K ∇υ, (3)

with the Nabla operator de�ned in the 3-D Cartesian coordinate system as ∇ =
( ∂
∂x
, ∂
∂y
, ∂
∂z
). The particle displacement in a di�erential volume holds three independent

directional components and is written in a mathematical way via the Euler equation

∇p = −ρ · υ̇, (4)

where υ̇ stands for the derivative of the particle velocity with respect to time and is
de�ned as υ̇ = ∂υ

∂t
. Inserting Eq. 3 in Eq. 4 yields the Helmholtz equation in its time-

independent form as follows: (
∆+ k2

)
p = 0. (5)

Eq. 5 describes the law that governs wave propagation in any medium, where the
wavenumber 8 is de�ned as k = ω

c
. It stands in direct relationship to the propaga-

tion speed c and the angular frequency ω = 2πf . The Laplacian operator ∆ is de�ned
as

∆ = ∇T · ∇

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

8. This quantity relates the propagation speed of a wave to its oscillation frequency and has a unit
of m−1. It gives the number of oscillations that �t in the unity length of 2π.
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2.1.1 Homogeneous Solution

The homogeneous solution of the Helmholtz equation for plane waves can be solved
through an exponential approach of the form

ph(r) = e−ikxx · e−ikyy · e−ikzz

= p(x) · p(y) · p(z). (6)

The solution as presented in Eq. 6 is separated into terms that depend each on only
one of the space variables. Together they form the solution ph(r) to the homogeneous
problem given by (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
ph = 0. (7)

Inserting the product from Eq. 6 in Eq. 7 delivers the characteristic equation

k2 = k2x + k2y + k2z , (8)

where (kx, ky, kz) denote the wave numbers in each of the coordinate directions and
are sumarized within the wave vector kT = [kx, ky, kz]

T. All homogeneous solutions,
for which Eq. 8 is ful�lled, are written in a compact form as

ph(r) = e−ikTr · δ(kTk− k2). (9)

The solutions for both the 1-D and 2-D problems can be found, amongst others in
[Wil99,KFCS00], where additional information concerning the k − space 9 is also avail-
able.

2.2 Green's Function Of The Free-Field

No real source generates the �eld described by Eq. 5, which is why a di�erent approach
is necessary in order to describe other kind of �elds. The RIR is obtained in the majority
of cases by measuring at the receiver position the �eld generated by a source radiating an
impulse. It is precisely this kind of �elds that constitute the foundation for the ISM, where
all mirrored sources radiate the same impulse at the same time at their corresponding
positions. As shown in Section 3.3, the RIR for point sources and receivers can be
computed by superposition of L impulses. These are radiated by L identical sources
placed free �eld. The analogy between the ISM and the RMM is treated in Section 3.2.

9. 2-D or 3-D Fourier transform of any function a(k) de�ned in space.
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2.2.1 Green's function in 1-D

An inhomogeneity is introduced under free-�eld conditions in form of an impulse at a
certain time in space. This is described in a mathematical way by equalising the homoge-
neous wave equation to a non-zero term. The latter describes the inhomogeneity itself,
where G stands for the Green's function and is responsible for triggering the elementary
non-homogeneous problem given by Eq. 11. The δ distributions represent an impulse
being radiated at a time t and place x in space. 10

The next considerations are done for the 1-D problem in favour of a simple notation.
In general, the Green's function G(x, s) of a linear di�erential operator L = L(x, t)
acting on distributions over a subset of the Euclidean space Rn at a point x in space, is
any solution of

L G(x, t) = δ(x)δ(t), (10)

where G is the fundamental solution associated to L. The linear di�erential operator is
de�ned for the 1-D wave equation as L = 1

c2
∂2

∂t2
− ∆ and when applied to Eq. 10 it

yields

[
1

c2
∂2

∂t2
−∆

]
G(x, t) = δ(x)δ(t)

1

c2
∂2G(x, t)

∂t2
− ∂2G(x, t)

∂x2
= δ(x)δ(t). (11)

The non-homogeneous wave equation is a di�erential equation of the form

L u(x, t) = f(x, t). (12)

More general information concerning the solution of second-order time-dependent par-
tial di�erential equations and boundary value problems can be found in [WW96,AW05,
MF53,Heu13] et al. For a detailed study concerning the Green's function of the wave
equation refer to [Som92].

2.2.2 Free-Field Green's Function in 3-D

The non-homogeneous problem in free-�eld can be solved by �nding the Green's function
G3D(r) of Eq. 13. The Green's function in its time-independent form for a point source

10. TheDirac delta is a generalized function or rather distribution that equals zero everywhere except

at zero on the real number line. It is de�ned as δ(t) =

{
1 if t = 0,

0 else.
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place at r =
√
x2 + y2 + z2 is found by solving the following equation:

(
∆+ k2

)
G3D(r) = −δ3D(r)[

1

r2
∂

∂r

(
r2
∂

∂r

)
+ k2

]
G3D(r) = −δ3D(r), (13)

where the linear di�erential operator L is given by ∆+ k2. The Laplacian is obtained in

the general manner as ∆ = 1
rD−1

∂
∂r

(
rD−1 ∂

∂r

)
. A detailed derivation of the last result

can be found in [Zot14b]. The following approach: G = α eγr

r
yields for the 3-D case:

1

r2
∂

∂r

(
r2
∂

∂r

)
G3D(r) =

1

r2
∂

∂r

[
r2
(
γ − 1

r

)
G3D(r)

]
=

1

r2
∂

∂r

[
(r2γ − r)G3D(r)

]
=

(
2γ

r
− 1

r2

)
G3D(r) +

(
γ − 1

r

)2

G3D(r)

=

(
2γ

r
− 1

r2
+ γ2 − 2γ

r
+

1

r2

)
G3D(r)

and thus for the non-homegeneous problem

(
γ2 + k2

)
G3D(r) = −δ3D(r). (14)

γ is found with the last equation, which must be valid for r > 0 as well as for r → 0.
If r > 0 then δ3D(r > 0) = 0 and therefore γ ± ik. By using the divergence theorem 11

one arrives to the well-known solution for the Green's function of a point source under
free-�eld conditions:

G3D(kr) =
e−ikr

4πr
. (15)

More to the derivation of the Green's function for a point source under free-�eld condi-
tions can be found in [Zot14b] et al. For now Eq. 15 constitutes the correlation between
multipoles, concretely the multipole (0, 0, 0) or monopole and the Green's function for
point sources as used in Section 3.1.2 with the RMM.

11. Integral used to compute the strength of a source in vector-based �elds as: Qs =∮
∂V

a(r)T dS(r) =
∫
V
δTa(r) dV (r).
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2.3 Describing Directivities

2.3.1 Multipoles

It is precisely the last result from Section 2.2.2 which constitutes the direct relationship
between the Green's function, i.e. the solution to the non-homogeneous problem, and
the radiation pattern of an acoustical multipoles used to describe room transfer functions
for sources and receivers of arbitrary directivity with the RMM.

Multipoles are basically constructed from distributions of point sources in�nitesimally
close to each other. These have equal amplitudes but opposite phases resulting, as visi-
ble in Fig. 4, in positive and negative interferences. The simplest multipole or monopole
radiates sound with an omni-directional characteristic, meaning there is no angular de-
pendecy of the sound pressure in space, see Eq. 14.

Many publications [RTB98,Wil99] et al. have studied the relationship between higher
order multipoles and the monopole. The latter is equivalent to G3D(kr). Higher orde
multipoles are obtained by deriving the Green's function with respect to the coordinate
system. A multipole M̃lmn(kr) of the order l +m+ n is given by:

M̃lmn(kr) =
∂l

∂xl
∂m

∂ym
∂n

∂zn
G3D(kr).

In addition, a linear combination of these derivatives can be used to represent directiv-
ity patterns for both sources and receivers. Some of the theory concerning multipoles
is treated extensively in [Wil99] whereas the proposed method for creating multipoles
of higher order via derivatives has been studied recently in [PDV13]. Pollow used the
Boundary Element Method (BEM) in order to compare the room responses obtained
by means of the proposed analytical calculation. The results match each other and show
potential to complement the current research of RIR measurement of source and receiver
of arbitrary directivity. However, Pollow noticed some unwanted frequency-response be-
haviour of the RMM that deserves more attention in later sections.

The free-�eld sound radiation of a 2-D monopole and dipole are exemplarily illustrated
in Fig. 7. Both sources were placed at r

′T = [x, y]T = [3, 2.5]T in a 2-D plane of 9m
x 5m. The dipole sound �eld arises via a derivation of Green's function with respect to
the y-axis and is therefore oriented in the same direction. Eq. 16 describes the dipole's
sound �eld, which di�ers to the monopole's sound �eld by a multiplication of the dipole
distance d 12 and by replacing G3D(kr) by its derivative. The angle dependecy of the
dipole's �eld is evident, as most of the source's energy is directed in the y-coordinate

12. Distance between two point sources of opposite phase that form the dipole. It is assumed to be
vanishingly small.
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while almost no wave propagation takes place in the x direction. A gray scale was used
here in order to display the source's energy, white represents a high energy value while
black is the opposite.

M̃010(kr) =
1

−ik
∂

∂y
G3D(kr) (16)
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Figure 7: Sound �eld of a monopole (left) and of a dipole (right) in the 2-D case.

Creating directivity patterns in this manner has both advantages and disadvantages.
The advantages are the straightforward relationship between the multipoles and the
derivatives of G3D(kr). On the other hand, the computational complexity will increase
drastically as soon as multipoles of higher orders are computed. This leans on the fact
that a multipole of the N th order requires N = l +m+ n derivatives of the monopole.
Thereby is l the number of derivatives of the Green's function with respect to the
x-coordinate, m with respect to the y- and n with respect to z-, respectively. Conse-

quently,
(NMP + 1)(NMP + 2)(NMP + 3)

6
∝ N3

MP derivatives are necessary in order

to describe all existing multipoles up to the N th
MP order. 13

How room impulse responses are computed with the RMM is treated in Section 3.1 while
their expansion into room responses of arbitrary directivities on the basis of multipoles
is presented in Section 3.5.3. There the advantage o�ered by the direct relationship
of higher order multipoles and the Green's function used for the RMM is evident. The
latter is described by trigonometrical functions whose derivatives are straightforward to
compute. The solution in this form enables an easy computation of higher order multi-
pole characteristics that can be converted into their spherical harmonic equivalent and
subsequently be used for the design of arbitrary directivities. The conversion between
spherical harmonics and multipole characteristics is treated in Section 2.3.4.

13. This result follows from applying the constant and linear Gaussian summation formulas to the

number M =
M∑
l=0

M−l∑
m=0

M−l−m∑
n=0

1 of derivatives needed.
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2.3.2 Angular Dependent Solutions To The 3-D Wave Equation In Spherical
Coordinates

The spherical harmonic functions are a set of orthornormal functions on the two-dimensional
sphere S2, which form a complete and orthonormal base of the Hilbert space L2(S2). 14

These angular-dependent functions are de�ned in 3-D space by two angles, a zenith ϑ
and an azimuth ϕ angle. The spherical coordinate system is favoured given the nature
of the variables used. Together with the radious r it becomes possible to de�ne positions
in 3-D space as illustrated in Fig. 8. In acoustics the spherical harmonics are the angular
dependent part of the solution of the wave equation in the spherical coordinate system
and are de�ned as

Y m
n (ϑ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cosϑ)eimϕ. (17)

Pm
n (x) represents the associated Legendre polynomials of the 1st kind. These polyno-

mials constitute the solution to the Legendre di�erential equation:

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (18)

The solution will depend on the order n and degree m and is given by

Pm
n (x) = (−1)m(1− x2)

m
2
dm

dxm
Pn(x), (19)

where Pn(x) = P 0
n(x). These polynomials of degree n are used to describe �elds that

feature no variation in the azimuthal direction given that m = 0. They can be written
with Rodrigues' Formula as follows:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

As seen to the left of Fig. 3, these functions are de�ned for negative values of m too.
Eq. 19 is valid for positive values of n and m only, which is why another de�nition is
necessary once m takes negative values:

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x). (20)

14. A Hilbert space is an abstract vector space possesing the structure of an inner product that allows
length and angle to be measured.



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 23

The complete solution to the 3-D wave equation in the spherical coordinate system in-
cluding a deeper analysis of the solution to the Legendre di�erential equation can be
found in [Wil99] et al. For now the mathematical principles concerning the spherical
harmonic functions have been presented and can be used, as done in Section 3.5.1, for
providing sources and receivers with directivities based on spherical harmonic functions.

The relationship between the Cartesian and spherical coordinate systems is given by rT =
[x, y, z]T = [r cosϕ sinϑ, r sinϕ sinϑ, r cosϑ]T. Analogously the spherical coor-

dinates are computed as follows: [r, ϑ, ϕ] =

[√
x2 + y2 + z2, arccos

(
z
r

)
, arctan

(
x
y

)]
and are de�ned in r ε [0,∞], ϑ ε [0, π] and ϕ ε [0, 2π].

Figure 8: Spherical coordinate system.

Orthonormality And Completeness Properties: As already mentioned before, the
spherical harmonics are an orthonormal set of functions. This means that the inner
product of any spherical harmonics must equal to one, i.e. < Y m

n (ϑ, ϕ), Y m′

n′ (ϑ, ϕ)∗ >
= 1. The inner product can be written with the continuous support of both angles ϑ
and ϕ as:

∫ 2π

0

dϕ

∫ π

0

Y m
n (ϑ, ϕ)Y m′

n′ (ϑ, ϕ)∗ sinϑ dϑ = δn,n′δm,m′ . (21)

Applying the completeness relation to the spherical harmonic functions yields the impor-
tant relation

∞∑
n=0

n∑
m=−n

Y m
n (ϑ, ϕ)Y m

n (ϑ′, ϕ′)∗ = δ(ϕ− ϕ′)δ(cosϑ− cosϑ′). (22)
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The latter manifests itself in any complete set of orthonormal functions. As a result any
arbitrary function on a sphere a(ϑ, ϕ) can be decomposed as follows:

a(ϑ, ϕ) =
∞∑
n=0

n∑
m=−n

AnmY
m
n (ϑ, ϕ), (23)

where Anm is the so-called spherical wave spectrum consisting of complex constants.
It can be found thanks to the orthonormality completeness property from Eq. 21 and
Eq. 22 as:

Anm =

∫
dΩ Y m

n (ϑ, ϕ)∗a(ϑ, ϕ). (24)

Thereby are Y m
n (ϑ, ϕ)∗ the complex conjugated spherical harmonic coe�cients of Y m

n (ϑ, ϕ)

and Ω is the solid angle de�ned as
∫
dΩ =

∫ 2π

0
dϕ

∫ π

0
sinϑ dϑ.

Figure 9: Directivity patterns formed by superposition of the spherical harmonics (0, 0)
and (1, 1) from Fig. 3.

In conclusion spherical harmonics o�er great �exibility for the design of arbitrary direc-
tivities by means of superposition. Illustrated in Fig. 9 is a directivity pattern formed by
superposition of a spherical harmonic function of 0th and one of 1st order. As discussed
later in Section 4.3.1, these orthonormal set of functions also o�er a good method of
analysing the room response's early re�ections and single energy contributions when di-
rectivities are present. These constitute the main advantages over other functions like
multipoles or spatial windows amongst others.
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2.3.3 Matrix / Vector Notation Of The Spherical Harmonics And Multipoles

At this point it is possible to describe directivity patterns by means of the spherical
harmonic functions Y (θ) and the multipoles Mlmn(θ)

15. The latter are used in com-
bination with the RMM given their convenient relationship to the Green's function of a
point source in free �eld. The spherical harmonic decomposition has prooven to be a
good method for the analysis of the room re�ections in space. Therefore the conversion
between the directional room responses on the basis of multipole characteristics into
their spherical harmonic representation is necessary to facilitate the analysis presented
in Section 4.3.

A matrix notation of the spherical harmonics and multipole characteristics has proven
to be convenient when computing them for a large number of orders. The result of a
matrix notation is a more compact representation of these functions for as many sources
as illustrated in Fig. 20, where L de�nes the number of image sources and thus the
number of rows found in Y(θ). The number of columns is determined by the maximal
spherical harmonic order as (NSH + 1)2. The vector storing the sampling points as a
function of both spherical angles is given as:

θ =


θ1

T

θ2
T

...
θL

T

 =


ϑ1 ϕ1

ϑ2 ϕ2
...

...
ϑL ϕL

 . (25)

Y(θ) is computed with the de�nition of the spherical angles vector as:

Y(θ) =


Y 0
0 (θ1) Y −1

1 (θ1) Y 0
1 (θ1) Y 1

1 (θ1) . . . Y NSH
NSH

(θ1)

Y 0
0 (θ2) Y −1

1 (θ2) Y 0
1 (θ2) Y 1

1 (θ2) . . . Y NSH
NSH

(θ2)
...

...
...

...
. . .

...

Y 0
0 (θL) Y −1

1 (θL) Y 0
1 (θL) Y 1

1 (θL) . . . Y NSH
NSH

(θL)

 (26)

A similiar notation is used when computing M(θ) containing the multipole coe�cients
for the chosen points in space and maximal multipole order NMP . This matrix features L

number of rows and
(NMP + 1)(NMP + 2)(NMP + 3)

6
number of columns. As a result

this matrix will always feature more columns than Y(θ) for the same ordersNSH = NMP .

M(θ) =


M000(θ1) M100(θ1) M010(θ1) M001(θ1) . . . M00NMP

(θ1)
M000(θ2) M100(θ2) M010(θ2) M001(θ2) . . . M00NMP

(θ2)
...

...
...

...
. . .

...
M000(θL) M100(θL) M010(θL) M001(θL) . . . M00NMP

(θL)

 (27)

15. From now on the tilde is omitted in order to indicate the normalized multipoles Mlmn(θ) de�ned
in Section 3.5.4 as used for the computer simulations.
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2.3.4 Conversion Between Spherical Harmonics And Multipoles

A transformation matrix is needed in order to transform the results obtained using the
RMM with directivity on the basis of multipoles into their spherical harmonic representa-
tion. As mentioned in the previous section, the spherical wave spectrum of any arbitrary
function a(θ) on a sphere can be found by means of integration. If that function was to
be a multipole Mlmn(θ) de�ned on a sphere, then its spherical wave spectrum can be
found with Eq. 24 as:

Mn′m′ =

∫
Y m′

n′ (θ)∗Mlmn(θ) dΩ. (28)

It is precisely Eq. 28 that gives the realtionship between spherical harmonics and multi-
poles. A distinction of the indices is here necessary because the orders of both functions
are independent of each other. On the one hand there are multipoles Mlmn(θ) and on
the other there are spherical harmonics Y m′

n′ (θ), where the apostrophe underlines the
di�erence between a spherical harmonic of the n′ order and m′ degree and monopole
derived l +m+ n times.

The multipole characteristic Mlmn(θ) is henceforth decomposed in its spherical wave
spectrum as:

Mlmn(θ) =
∞∑

n′=0

n′∑
m′=−n′

Mn′m′Y m′

n′ (θ). (29)

2.3.5 Conversion Matrix

The last equation cannot be computed for in�nitely many orders n′, which is why a
truncation of the sum is necessary when calculating the spherical wave spectrum Mn′m′ .
As a consequence, the function's spatial resolution is reduced subject to the maximal
order n′ of the �rst sum in Eq. 29. The complex coe�cientsMn′m′ can be pre-computed
for speci�c orders. The idea is to compute all possible combinations in order to facili-
tate a direct transform between room responses of arbitrary directivity on the basis of
multipoles into their spherical harmonic equivalent and vice versa.

The problem is the fact that evaluating the spherical harmonics at all support angles ϑ
and ϕ is not an easy task. Thus a more e�cient method is required in order to solve
Eq.28 for a great number of spherical harmonics and multipoles and at the same time
retain a good accuracy of the spherical body. This problem can be solved by sampling
the desired spherical body with a pattern de�ned by a �nite set of 3-D points in space.
The latter can be de�ned, as done in Section 2.3.3, with L number of spherical angular
vectors.
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Sampling The 3-D Sphere: A t−Design is a sampling pattern used for generating
sampled spherical bodies with limited resolution. Some of the widely-used sampling
patterns are illustrated in Fig. 10. Their advantages and disadvantages are discussed in
detail in [Zot09b,Zot14b].

Figure 10: Examples of t-Designs with di�erent values for L taken from [Zot14b].

The result of discretizing the sphere by means of a t-Design is an advantageous simpli-
�cation of the integral given by Eq. 28 into a sum over a �nite number L of spherical
angles θT

l = [cosϕl sinϑl, sinϕl sinϑl, cosϑl]
T. The t-Design used in Section 4 can

be found in Fig. 11. Its surfaces are de�ned by 180 Cartesian points in 3-D space.

Figure 11: t-Design made out of 180 points in space.



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 28

By using one of the many t-Designs it becomes possible to compute the coe�cients from
their integral form in Eq. 28 into their �nite resolution representation in Eq. 30. These
coe�cients hold the relationship between spherical harmonic and multipole functions
and render a conversion between them possible. They will from now on be refered as
the c − coefficients of the indices (n′,m′) and (l,m, n). They are computed for L
points in 3-D space as follows:

clmn
n′m′ =

4π

L

L∑
l=1

Y m′

n′ (θl) Mlmn(θl). (30)

Thereby are Y m′

n′ (θl) and Mlmn(θl) the corresponding spherical harmonic and multipole
coe�cients at the lth sample point in space. All the c-coe�cients of prede�ned maximal
orders N ′

SH and NMP can be computed and stored in a matrix enabling a one-to-one
conversion between spherical-harmonic- and multipole-based room transfer function sim-
ulation with arbitrary directivities. How these coe�cients are used in order to convert
the simulations of room transfer functions with directivities on the basis of multipoles
into their spherical-harmonic-based equivalents is described in Section 3.5.1.

Next the C-matrix containing all c-coe�cients is de�ned as:

C = Y(θ)T ·M(θ)

=



c00000 c10000 c01000 c00100 . . . c00NMP
00

c0001−1 c1001−1 c0101−1 c0011−1 . . . c00NMP
1−1

c00010 c10010 c01010 c00110 . . . c00NMP
10

c00011 c10011 c01011 c00111 . . . c00NMP
11

...
...

...
...

. . .
...

c000NSHNSH
c100NSHNSH

c010NSHNSH
c001NSHNSH

. . . c00NMP
NSHNSH


, (31)

where clmn
n′m′ is the c-coe�cient between a spherical harmonic of the order and degree

(n′,m′) and a multipole created by means of (l,m, n) derivatives of the monopole with
respect to the (x, y, z) axis. A C-matrix featuring a colour bar representing its energy
levels in dB is exemplarily illustrated in Fig. 12 by evaluating 20 log10(|C|).

This non-square matrix will be (NSH+1)2 times (NMP+1)(NMP+2)(NMP+3)
6

. Its dimensions
follow from two numbers, the �rst one represents the number of existing spherical har-
monics up to the maximal order Nmax. The second is the number of existing multipoles
up to a maximal NMP number of derivatives of the monopole. Both orders determine
the maximal spatial resolution possible for that order.
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Figure 12: Colour plot of a C-matrix for NSH = NMP = 3.
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3 Shoebox Shaped Room With Rigid Walls

3.1 The Room Modes Method

3.1.1 Homogeneous Solution

Next, the wave equation is to be solved in rectangular enclosures, where rigid walls
impose sound-hard boundary conditions. The goal is to �nd the functions that ful�ll
both the wave equation and the room's boundary conditions. Here, the procedure is
carried out for the x-coordinate only. The desired solution for pn(r) in Eq.36 is obtained
after applying the same procedure to the y- and z-coordinate. The approach for the
1-D problem consists of the superposition of two waves, which means that the sound
pressure measured at a point x in space is the result of an in- and out-going wave. The
relation reads as

p(x) = aeikxx + be−ikxx.

As already mentioned before, totally re�ecting and massive walls are assumed for the
rectangular room. Six re�ecting surfaces forming the shoebox shaped room are placed
at

x =

{
0, Lx

}
, y =

{
0, Ly

}
and z =

{
0, Lz

}
. (32)

The boundary conditions impose that the normal components of the particle velocity
υx(x = 0) = 0. The derivative of the pressure with respect to x must vanish at those
points due to the 1-D Euler equation.

υ̇x ∝ ∂

∂x
p(x = 0) = 0. (33)

From Eq. 33 it follows that

∂

∂x
p(x = 0) = (ikx)ae

ikxx + (−ikx)be−ikxx

= (ikx)
(
aeikxx − be−ikxx

)
= 0.

The velocity at x = 0 must be zero and thus ae0 − be0 = 0. This condition is ful�lled
by a = b. The choice a = b = 1

2
yields a compact expression for the boundary

condition at x = 0:
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p(x) =
eikxx + e−ikxx

2
= cos(kxx). (34)

The other boundary condition located at x = Lx requires that υx(x = Lx) = 0 and
hence

∂

∂x
p(x = Lx) =

∂

∂x
cos(kxLx) = −kx sin(kxLx) = 0.

This boundary condition can only be ful�lled by kx = π
Lx
lx. Thus the solution for p(x)

ful�lling both boundary conditions is

p(x) = cos

(
π

Lx

lx · x
)
, for all lx ε N0. (35)

Doing this for each coordinate separately yields the solution for the 3-D problem:

pn(r) = p(x) · p(y) · p(z)

= cos

(
π lx
Lx

x

)
· cos

(
π ly
Ly

y

)
· cos

(
π lz
Lz

z

)
, (36)

where the subscript n stands for the normal modes that arise in rectangular rooms with
rigid walls. The characteristic equation (Eq. 8) requires that

k2 =

(
2πf

c

)2

= k2x + k2y + k2z , (37)

allowing only discrete frequencies in the homogeneous solution. The so-called eigenfre-
quencies are obtained for lx, ly, lz ε N0 when solving Eq. 37 for f .

f(lx, ly, lz) =
c

2

√(
lx
Lx

)2

+

(
ly
Ly

)2

+

(
lz
Lz

)2

(38)

3.1.2 Non-Homogeneous Solution

The solution to Green's problem for the 3-D non-homogeneous wave equation 16 can
be solved by �nding G thorugh a combination of Laplace (with respect to time) and

16. Linear partial di�erential equation of 2nd order used for decribing waves.



Ureta Staackmann: Room Transfer Functions On The Basis Of Modes 32

Fourier (with respect to the spatial coordinates) transforms. The explicit approach
for solving Green's problem for point sources under free-�eld conditions is found in
Appendix A. Here, the solution to the non-homogeneous problem for enclosed spaces
with parallel and rigid walls is presented. The general solution disregarding the boundary
conditions at �rst reads as follows:

G(r, t) =
1

2πi

∮
c

est
1

(2π)d

∫
Rd

eik
T
r g(k, s) dk ds. (39)

The time-dependent solution in space is computed by means of inverse Fourier and
Laplace transforms of g(k, s). The approach used here in order to �nd the non-
homogeneous solution G(r, t) consists of time and local exponential functions weighted
with a coe�cient γ. G(r, t) can be computed with s = iω as:

G(r, t) =

∫ ∫
γ eik

T
reiωt dω dk, (40)

where kT = [kx, ky, kz]
T and rT = [x, y, z]T. Hereby de�nes k the k-space and must

not be mistaken with the wavenumber k. As eik
T
r does not ful�ll the boundary conditions,

the solution is constructed with the homogeneous solution from Section 3.1.1 for point
sources in enclosed spaces with parallel and rigid walls. The latter in its truncated form 17

will be written as ψl(r) where l represents a mode combination of the indices lx, ly and
lz. The orthonormal basis solution for D = 3 in the Fourier domain reads as:

ψl(r) =
D∏

d=0

√
2− δld
Ld

cos

(
π ld
Ld

rd

)

=

√
(2− δlx)(2− δly)(2− δlz)

LxLyLz

cos

(
π lx
Lx

x

)
cos

(
π ly
Ly

y

)
cos

(
π lz
Lz

z

)
.

(41)

An important consequence of Eq. 36 is the discretisation of the eigenvalues through the

integer indices given that k = [kx, ky, kz]
T =

[
π lx
Lx

,
π ly
Ly

,
π lz
Lz

]T
. As a result, the

integral over dk in Eq. 40 becomes a sum over L = (lmax + 1)D modal combinations
of the discrete indices (lx, ly, lz) to

G(r, t) =

∫ ∞

−∞

L∑
l=1

γ ψl(r)e
iωt dω. (42)

17. This means that Eq. 36 will not be summed for in�nitely many modes, but for a limited number
L of modes combinations that are taken into consideration.
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Inserting this result for the Green's function in the time-dependent wave equation

(
∆− 1

c2
∂2

∂t2

)
G = −δ(t)δ(r− r0)

yields

∫ ∞

−∞

L∑
l

γ

(
−ω2

l

c2
− −ω2

c2

)
ψl(r) e

iωt dω = −δ(t)δ(r− r0)

∫ ∞

−∞

L∑
l

γ

c2
(ω2 − ω2

l ) ψl(r) e
iωt dω = −δ(t)δ(r− r0). (43)

Eq. 43 is obtained given that ∂2

∂t2
G(r, t) = (iω)2 G(r, t) = −ω2 G(r, t) and by applying

the Laplacian to the homogeneous solution:

∆ ψl(r) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
ψl(r)

=

[
−
(
π lx
Lx

)2

−
(
π ly
Ly

)2

−
(
π lz
Lz

)2
]
ψl(r)

= −[k2x + k2y + k2z ] ψl(r) = −k2l ψl(r)

= −ω
2
l

c2
ψl(r).

The subscript refers here to the lth index combination and corresponding discrete fre-

quency ωl. With these last results Eq. 43 is now transformed with

∫ ∫
e−iω′t ψl′(r) dr dt

resulting in

∫ ∞

−∞

L∑
l

γ

c2
(ω2 − ω2

l )

∫
V

ψl(r) ψl′(r) dr

∫ ∞

−∞
ei(ω−ω′)t dt dω = −

∫
δ(t)e−iω′t·∫

δ(r− r0)ψl′(r) dr.

The equation can be simpli�ed since

∫
V

ψl(r) ψl′(r) dr = δll′ for all limited volumes V ,

and by applying the Fourier identity of

∫
ei(ω−ω′)t dt = 2πδ(ω − ω′) to
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∫ ∞

−∞

L∑
l

γ

c2
(ω2 − ω2

l ) δl′l 2πδ(ω − ω′) dω = −1 · ψl′(r0). (44)

Both sum and integral vanish because

∫
f(ω)δ(ω − ω′) dω = f(ω′) and

∑
l

δll′ =

{
1 if l = l′,

0 else.
.

Finally the coe�cients γ remain:

γ

c2
(ω2 − ω2

l ) 2π = −ψl(r0)

γ = − c2

2π

ψl(r0)

(ω2 − ω2
l )
. (45)

γ will now be carefully transformed into the time-domain when inserting it into Eq. 43.

First it has to be decomposed in its partial fractions
1

ω2 − ω2
l

=
A

ω − ωl

+
B

ω + ωl

by

�nding the two constants A and B for the corresponding poles ± ωl.

The partial fraction decomposition yields

1

ω2 − ω2
l

=
A

ω − ωl

+
B

ω + ωl

=
A(ω + ωl) +B(ω − ωl)

ω2 − ω2
l

. (46)

From Eq.46 it follows that B = −1
2 ωl

and A = −B. Thus A = 1
2 ωl

and we get γ in
partial fractions

γ = − c2

4πωl

ψl(r0)

[
1

ω − ωl

− 1

ω + ωl

]
. (47)

The Green's function that satis�es the wave equation can be computed from insertion
of Eq. 47 into Eq. 42:

G(r, t) = −
L∑
l

c2

4πωl

ψl(r0) ψl(r)

∫ ∞

−∞

[
eiωt

ω − ωl

− eiωt

ω + ωl

]
dω. (48)

The next step consists on transforming Eq. 48 back to a causal time-dependent solution.
The improper integral can be solved with Jordan's lemma 18 as a contour integral over

18. Tool used in complex analysis together with the residue theorem in order to compute integrals
from real analysis. The function is integrated over a closed path C going from the negative to the
positive real axis and in a semi-circle back to the starting point.
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the closed path C in form of an in�nitely big semi-circle in the imaginary plane ω as
long as the integrand eiωt vanishes. This will be the case for t > 0 as long as C+ passes
the positive imaginary axis given that lim

ω→i∞
eiωt = e−∞t. For t < 0 on the other hand,

the semi-circle C− has to pass the negative imaginary axis in order for the integrand to
vanish, thus lim

ω→−i∞
e−iωt = e−∞t.

e
iωt|ω→i∞ = e

−∞ t

ℜ{ω}

ℑ{ω}

ǫ →+ 0

−ωj +iǫ +ωj +iǫ

C+

convergent for t > 0

e
iωt|ω→−i∞ = e

+∞ t

convergent for t < 0

C−

Figure 13: Regularization of the real poles ± ωl as illustrated by Zotter in [Zot14b].

Both integral paths pass, as illustrated in Fig. 13, over the real-valued poles ± ωl. This
represents a major problem because the integral in Eq. 48 cannot be evaluated at those
angular frequencies. The solution proposed here is to apply an in�nitesimal shift of
the poles towards the interior of the curve C+. The contour integral is solved with
the Residue Theorem presented in Appendix A for each of the terms separately as∮ f(ω)

ω−ω0
= 2πi f(ω0). In this way it becomes possible to integrate the analytical function

f(ω) = eiωt over the shifted poles ± ωl + iε.

The residues of the new de�ned poles can be computed from Eq. 48. Note that the
solution is zero at negative times t < 0 because C does not contain poles. For C+ and
positive times t ≥ 0 we obtain a causal solution. The Green's function is computed with
the sine exponential identity as:

G(r, t) = −
L∑
l

c2

4πωl

ψl(r0) ψl(r) 2πi lim
ε→0+

[
f(ωl + iε)− f(−ωl + iε)

]

= −
L∑
l

c2

2ωl

ψl(r0) ψl(r) i lim
ε→0+

[
ei(ωl+iε)t − ei(−ωl+iε)t

]
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= −
L∑
l

c2

2ωl

ψl(r0) ψl(r) i lim
ε→0+

[
e(iωl−ε)t − e(−iωl−ε)t

]

= −
L∑
l

c2

2ωl

ψl(r0) ψl(r) i 2i sin(ωlt) lim
ε→0+

e−εt

=
L∑
l

c2

ωl

ψl(r0) ψl(r) sin(ωlt) lim
ε→0+

e−εt

=
L∑
l

c2 ψl(r0) ψl(r)
sin(ωlt)

ωl

· t
t

lim
ε→0+

e−εt.

The distinction between the cases t ≥ 0 and t < 0 can be elegantly expressed by
employing the unit step function u(t) 19. The Green's function in rectangular room's

with rigid walls is given with the sinc function sinc(x) = sin(x)
x

by:

G(r, t) = c2t
L∑
l

ψl(r0) ψl(r) sinc(ωlt) u(t) lim
ε→0+

e−εt. (49)

This Green's function is valid in shoebox shaped rooms with perfectly re�ecting walls for
point sources and receivers, where the homoegeneous solution has been found by means
of the normal modes. How room responses are computed for sources and receivers of
arbitrary directivities is discussed in Section 3.5.3. For now, the solution to the non-
homogeneous problem has been found and is available in the form of Eq. 49 for rigid
walls. The choice of ε and how to adjust it to simulate the quantity of energy absorbed
by the walls is treated in Section 4.1.2.

3.1.3 Filters

The solution in form of Eq. 49 can be used in order to compute room impulse responses
on the basis of modes. The truncation of the in�nite sum to a �nite number of modes
constitutes the method's main problem. It will never deliver the perfect solution once
the truncation has been introduced. This is the case for both the low and high frequency
bands. The band limitation results in an abrupt truncation of the frequency response in
the higher frequency range. Modes that are too close to this cut-o� frequency would still
have an in�uence in the computed transfer function. In the same way, the low frequency
domain will not be correct either. The �nite summation has also an in�uence for lower
frequencies given the mode's in�uence between each other. Also, the 0th mode, i.e. for
lx = ly = lz = 0, results in a corruption of the time domain signals. These two problems
can be reduced to a certain extent by �ltering the RIR with adequate �lters. However,

19. Discontinuous function de�ned as u(t) =

{
0 if t < 0,

1 else.
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without fully removing inaccuracy due to the truncation of the mode summation.

High-Pass Filter

The 0th mode introduces a problem for the derivations used in Section 3.5.3 when divid-
ing by zero. It is absolutely necessary to �lter it with a high-pass �lter. The choice fell
here for a Butterworth 20 �lter of 2nd order, whose frequency response is steep enough
in order to exclude the resonance frequency 0Hz of the 0th mode. The next mode is
found high enough in frequency in order for it to pass with little in�uence from the �lter.
Its magnitude response is exemplarily illsutrated in Fig. 14, where the cut-o� frequency
fcut has been chosen to be the �rst non-zero room mode. The latter is found for this
case at around 38Hz.
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High−Pass 2nd order

Low−Pass 6th order

Figure 14: Low- and high-pass magnitude responses.

Low-Pass Filter

The in�uence of modes in the vicinity of the barrier frequency fb is damped with a
Butterworth low-pass �lter of 6th order. The barrier frequency de�nes here the highest
frequency mode taken for the simulation. Thus the in�uence of an abrupt truncation can
be minimized with the right choice for the �lter's cut-o� frequency. Illustrated in Fig. 14
is such a �lter for (fb, fcut) = (800, 400), meaning that the �lter's cut-o� frequency has

20. A Butterworth �lter is a signal processing �lter designed to have in the passband as �at a
frequency response as possible. Its gain is de�ned in terms of its transfer function and order as

G2(ω) = |H(iω)|2 =
G0

1 + ( ω
ωc
)2n

.
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been chosen to be half the barrier frequency. As seen for the blue curve, a maximum
attenuation of −36dB can be achieved at fb. A higher attenuation is thinkable and
adjustable via the �lter's order.

The result of �ltering the RIR with a low-pass �lter of 6th order is a phase shift of
the time domain signal itself. The latter will grow with the �lter's order, which is why
another solution is necessary given that higher �lter orders are necessary in order to
�lter modes in higher frequencies. It is important to remember the fact that modes will
be closer to each other at high frequency ranges. The high frequency domain is thus
densely �lled with room modes. The in�uence of an abrupt truncation is therefore more
signi�cant when considering a great number of room modes.

A solution avoiding the group-delay of the low-pass is to use a zero-phase �lter. 21 With
it, there is no additional group delay. Each of the �ltering steps are visible in Fig. 15
and Fig. 16, respectively. The original RIR is depicted in black, where the in�uence of
the 0th mode becomes evident. Its rising tendency is repressed once the high-pass �lter
is apllied. As seen for the red curve, the signal's ripple for the very �rst time instances
is still present. This disturbing e�ect is removed by applying the low-pass �lter resulting
in the black curve in Fig. 16. The resulting phase shift is clearly given when comparing
it to the blue curve, for which a zero-phase �lter was used. The direct sound is ploted in
form of the magenta line, which signalizes the accuracy of the achieved �ltering process.

The last curves can be analyzed in the Fourier domain too. It is precisely in this domain
where all modes are better indicated. The in�uence of each of the �lters can be best
appreciated, as seen in Fig. 16, in the frequency domain. The frequency dependent
increase and decrease of the magnitude response is visible as well as the barrier frequency,
which was set to be fb = 800Hz. This means that only modes until fb were considered.
The simulations as presented in Section 4 correspond to the �ltered signal represented by
the blue curves of Fig. 15 and Fig. 16. These �lters were also applied to the simulations
done with the ISM in order to ensure a qualitative comparison between both methods.

3.2 Analogy Between The RMM And ISM

The solution to Eq. 48 when rigid walls are present reads in k-space as:

P (k, r, r′) =
1

V

∞∑
l=−∞

ψl(r) ψl(r
′)

k2l − k2
, (50)

where l indicates, as de�ned in [Kut09], a 3-D sum over the modal indices lx, ly and lz in

21. Filter considered to have a linear response. As a result, the in�uence on the signals phase is
minimal.
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Figure 15: RIR and frequency domain representation of a signal �ltered with a high-pass
�lter of 2nd order.
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Figure 16: RIR and frequency domain representation of the signal in Fig. 15 �ltered with
a low-pass �lter 6th order and its zero-phase implementation.
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the form of ψl = cos

(
πlx
Lx

x

)
cos

(
πly
Ly

y

)
cos

(
πlz
Lz

z

)
. At present the result obtained

so far is valid for omni-directional characteristics only. The two cosine terms in Eq. 50 can
be multiplied once they have been expanded with their exponential identity as proposed
in [AB78]. The result summarized yields a compact notation for in�nitely many point
sources in free �eld as:

P (k, r, r′) =
1

8V

∞∑
l=−∞

7∑
h=0

e−ikTl rh

k2l − k2
. (51)

Thereby represents rh = [x± x′, y ± y′, z ± z′] the seven permutations of the primary
source as illustrated in Fig. 17.

Figure 17: The main block is formed out of eight sources in green. Seven of them are
images of the primary source placed in the blue rectangular room.

Although the ISM assumes free-�eld conditions, the delimiting surfaces are illustrated
in order to get a good idea of the imaging process done for a shoebox shaped room.
Thus the simulation of the RIR in an enclosed space is done in free �eld by adding the
contribution of every image source at the receiver position. The reason why this concept
is so prevalent lies in the fact that satisfactory results can be achieved through simple
computational operations. The practical use of the ISM for the simulation of room im-
pulse responses in rectangular rooms is treated and discussed in [AB78].
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Following [AB78], Eq. 51 can be expanded with the integral property of the delta distri-
bution from Section 3.1.2, with ‖ ξ ‖2= |ξx|2 + |ξy|2 + |ξz|2, and d3ξ = dξz dξy dξx. It
yields

P (k, r, r′) =
1

8V

7∑
h=0

∫ ∫ ∫ ∞

−∞

e−iξTrh

‖ ξ ‖2 −k2
∞∑

l=−∞

δ(ξ − kl) d
3ξ

=
1

8V

7∑
h=0

∫ ∫ ∫ ∞

−∞

e−iξTrh

‖ ξ ‖2 −k2
∞∑

l=−∞

δ(ξx − kx)δ(ξy − ky)δ(ξz − kz) dξz dξy dξx. (52)

Further, when using the Fourier identity
∞∑

lx=−∞

δ

(
ξx −

πlx
Lx

)
=
Lx

π

∞∑
lx=−∞

ei2Lxlxξx for y

and z too, it is possible to transform Eq. 52 into

P (k, r, r′) =
1

8V
· LxLyLz

π3

7∑
h=0

∫ ∫ ∫ ∞

−∞

e−iξTrh

‖ ξ ‖2 −k2
∞∑

lx=−∞

∞∑
ly=−∞

∞∑
lz=−∞

ei2Lxlxξx ei2Lylyξy ei2Lzlzξz dξz dξy dξx

=
1

8π3

7∑
h=0

∫ ∫ ∫ ∞

−∞

∞∑
l=−∞

e−iξT(rh−rl)

‖ ξ ‖2 −k2
d3ξ, (53)

where V represents the room's volume and the vector rTl = 2[Lxlx, Lyly, Lzlz]
T de�nes

the lth shift of the hth source in space. Eq. 53 can be solved in an elegant manner with
the result for the �eld of a point source under free-�eld conditions from Appendix A. As
identi�ed in [AB78], the triple integral is just a plane wave expansion for a point source

in free �eld given that
e−ik|‖r‖

4π ‖ r ‖
=

1

8π3

∫ ∫ ∫ ∞

−∞

e−iξTr

‖ ξ ‖2 −k2
d3ξ. The �eld of a point

source driven by the angular frequency in k = ω
c
in a rectangular room with rigid walls

can ultimately be written as

P (k, r, r′) =
7∑

h=0

∞∑
l=−∞

e−ik‖rh−rl‖

4π ‖ rh − rl ‖
. (54)

The last result corresponds, when inversely Fourier transformed, to the one obtained in
the time domain. Hence the RMM method is directly related to the ISM. This means
that both methods are equivalent and deliver the perfect solution when summed over
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in�nitely many modes and image sources, respectively. It is important to notice that
both methods deliver the RIR for point sources and omni-directional receivers only. Their
expansion with arbitrary directivities is presented in Section 3.5.

Moreover, the analogy between both methods becomes evident when analyzing Eq. 52
and thus the equivalence between Eq. 54 and Eq. 59 for the computation of RIR in
rectangular rooms with rigid walls. This is done through a multiplication of the free-�eld
solution of a point source with spaced delta distributions. The direct consequence is
the periodicity in k-space of the main block containing the seven permutations of the
primary source, that answers to the periodicity found in the cosine functions from ψl(r)
and thus of P (k, r, r′) too.

This insight is not only enlightening but is also backed up by the convolution theorem 22

when applied to Eq. 60. As seen in Section 3.3, the multiplications with the delta distri-
butions in k-space have become a convolution in three dimensional space between the
free-�eld solution G(r, r′) and δ(ri ± 2liLi).

3.3 The Image Source Method

The ISM can be explained by means of geometrical room acoustics. This domain
of room acoustics describes sound propagation in terms of rays and concerns the fre-
quency domain for which the wavelength of sound is small when compared to the room
dimensions. It is not a matter of sound waves anymore but rather of sound rays 23 that
arise as soon as λ � (Lx, Ly, Lz). The latter de�ne again the geometry of the room
in the (x, y, z) coordinates. These rays travel in well-de�ned directions and follow the
same propagation laws as light rays do. Their energy will remain constant provided the
medium does not cause any energy losses. As for every spherical wave, their amplitude
will fall directly proportional to 1

r
where r denotes the distance to the ray's origin. It

is precisely these kind of waves that are radiated and picked up and without any angle
dependency by point sources and receivers. Therefore, the results obtained from the fol-
lowing considerations are valid for point sources and receivers only. For more information
concerning room acoustics from a geometrical point of view refer to [Kut09,Goe06] et al.

The situation as it is in reality is exemplarily illustrated in Fig. 18. Here the sound rays
and their paths towards the receiver position can be seen. A sound ray that is re�ected
once before arriving at the receiver position is called a re�ection of 1st order. Thus the
ray's order is de�ned as the number of re�ections the ray undergoes before arriving at
the receiver position. In this example only the direct sound and some re�ections of 1st

22. The convolution theorem states that F(f ∗ g) = F(f) · F(g). This means that the Fourier
transform of a convolution is the pointwise product of the Fourier transforms.
23. Small portion of a spherical wave with a vanishing aperture which originates from a certain point

in space.
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source 

microphone           

Figure 18: Direct sound (1) and 1st order re�etions (2-5) of a point source in a rectan-
gular room.

order are illustrated.

Concretely, the image process consists in mirroring the primary source with respect to
the six delimiting sourfaces forming the shoebox shaped room. 24 The image sources
are identical to the primary source, meaning they radiate the same signal with the same
intensity and phase. The next considerations are done for the 2-D case, that result in
the 3-D solution when done considering the zenith angle as well.

Illustrated in Fig. 19 is the mirroring process in 2-D. Here, the �rst image source has
been placed at the mirrored position of the primary source [x1, y1]

T with respect to the
�rst delimiting surface. If the latter is placed at x0 = 0, then the �rst image source is
found at [−x1, y1]T or twice the distance between primary source and �rst boundary
condition. Both sources are identical to each other and as a result they must generate
the same �elds. Consequently the di�erence between them and thus the sound pressure's
gradient must be null at the mirroring point x0 precisely. This important conclusion can
be seen as a direct relationship between the ISM and RMM as written in Eq. 33.

For rectangular rooms there is a pair of parallel surfaces in every dimension. This means
that a second image source has to be mirrored with respect to the other delimiting sur-
face at Lx. This would mean that the second image source is found at [2Lx − x0, y1]

T.

24. An enclosed space with non-parallel walls can also be simulated with the ISM. In this case the
image sources can be overlapped within each other, which is why the simpli�ed form of shoebox shaped
or rectangular rooms with parallel walls is assumed.
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Figure 19: Principle of the ISM.

In doing so, the �rst condition has been disrupted by the second image source and to
solve this problem the process has to be done again for both of them until in�nitely many
image sources are mirrored in free �eld. Strictly speaking, the ISM will only deliver the
exact solution if the walls are completely rigid, meaning they re�ect 100% of the incident
wave's energy. 25 For all other cases the result will deviate because quantities such as the
re�ection coe�cient or absorption parameter are de�ned for plane waves only, while the
waves being radiated by the sources are assumed to be spherical. The good news is that
the errors are negligible if kr � 1, which means that the distance between the receiver
and all sources is large enough when compared to the wavelength λ. This condition
is given in the far-�eld, which is why the directivities are normalized to their far-�eld
approximation as presented in Section 3.5.2.

Once the image sources have been de�ned, their contribution at the receiver position
can be computed without having to consider the original enclosure of the room anymore.
The sound �eld at a point in space can be obtained by superposition of all contributions
given that all sources radiate the same signal at the same time instant. Each contribution
arrives at the receiver position with di�erent amplitudes and delays. The latter depend
on the re�ection coe�cient of the room's walls and on the direct path between them
and the receiver position, respectively. The process concerning the weighting of the
contributions can be written in a simpli�ed form and when assuming that these are
frequency independent as

h(t) =
L∑
l=1

al δ(t− tl). (55)

25. This is the case for a re�ection coe�cient Γ = 1. More information concerning this subject can
be found in Section 4.1.
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Eq. 55 can be understood as the sum of all re�exions generated by the primary source
in a room, each of them with an individual amplitude al and an arrival time tl. The
continuous room impulse response can be won by �ltering the coe�cients with shifted
sinc functions by tl. The room impulse responses simulated with the ISM are illustrated
in Section 4.2, while the discrete plot of Eq. 55 can be seen exemplarily in Fig. 22.

The ISM delivers a perfect solution, which answers at the same time to the modal
solution, when summed over in�nitely many image sources. In practice the in�nite sum
is approximated to a number of image sources L ε N+. For the RMM, only (lmax +1)D

modes are computed. As expected, the simulation will increase its accuracy in the
frequency domain the more image sources are taken into consideration.
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Figure 20: 3-D model of the ISM.

Fig. 20 illustrates the ISM with the receiver position represented as a red triangle and
the image sources as blue circles. The number of image sources can be computed as
L = 8 · b. Here indicates b the number of blocks placed in each coordinate, where a
block is de�ned as a periodic copy of the main block illustrated in Fig. 17. It contains
a set of eight image sources in 3-D space. The main block with the receiver represents
the starting point for the continuation process, from which blocks excluding the receiver
can be layed around the main block at will. The advantage of this technique is the
straightforward manner, in which the image model is built. Thus the number of blocks
determines the number of room re�ections considered. In this case, a total of 27 blocks
were generated resulting in 216 image sources.
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3.3.1 ISM In Its Time Domain Representation

The complete derivation of the image model can be found in [AB78]. Nevertheless, the
fundamentals are presented here, with the intention of a better understanding of the
method as well as of its equivalence to the RMM, see Section 3.2. The pressure wave of
the image sources in free-�eld conditions is given, assuming they are point sources, by
Eq. 15. Image sources are introduced in free �eld once the room's boundary conditions
are taken into consideration. The image process, see Fig. 19, in which the �rst image
source has been introduced, is formally written as:

P (ω, r, r′) =

[
e

−iω
c

r0

4πr0
+
e

−iω
c

r1

4πr1

]
e−iωt. (56)

Thereby is rT = [x, y, z]T the primary source and r′T = [x′, y′, z′]T the receiver
position. r0 is the Euclidean distance between the receiver position and the primary
source while r1 is the one between the receiver and �rst image source. 26 Seven image
sources can be de�ned out of the primary source in rectangular rooms delimited by six
surfaces. Together they can be combined to form a block of eight sources like the one
illustrated in Fig. 17, where the eight permutations become evident. They are de�ned
as rh = (x± x′, y ± y′, z ± z′) and can be summarized into a matrix containing all of
them as:

Rh =



r0
r1
r2
r3
r4
r5
r6
r7


=



x− x′ y − y′ z − z′

x+ x′ y − y′ z − z′

x− x′ y + y′ z − z′

x+ x′ y + y′ z − z′

x− x′ y − y′ z + z′

x+ x′ y − y′ z + z′

x− x′ y + y′ z + z′

x+ x′ y + y′ z + z′


. (57)

The sum over in�nte many room modes l = (lx, ly, lz) and thus in�nitely many periodic
shifts of the primary source is given by

P (ω, r, r′) =
7∑

h=0

∞∑
l=−∞

e
−iω
c

‖rh−rl‖

4π ‖ rh − rl ‖
e−iωt, (58)

where rTl is again the spatial shift of the hth source from the main block. The RIR
or time-domain Green's function is obtained when applying a Fourier tranform to the
pressure frequency response. Hence Eq. 58 takes the following form:

26. The Euclidean distance between two points in space is the length of the line segment connecting
them. It is de�ned as r0 = ||r0|| = ||r − r′|| =

√
(x− x′)2 + (y − y′)2 + (z − z′)2.
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p(t, r, r′) =
7∑

h=0

∞∑
l=−∞

δ(t− ‖rh−rl‖
c

)

4π ‖ rh − rl ‖
. (59)

Eq. 59 can be interpreted as a sum of in�nitely many impulses arriving at the receiver
position at all time instances t = ‖rh−rl‖

c
with an amplitude which will fall relative to the

distance ‖ rh − rl ‖. The solution in this form yields the perfect solution when summed
for −∞ → ∞ many periodic blocks b in each dimension and thus in�nitely many image
sources. This result backs up the approach as introduced in Eq. 55, where the RIR
was de�ned as a sum of impulses with di�erent amplitudes al and arrival times tl. An
interpretation of Eq. 59 in space is also thinkable since there must be a point source
radiating each of the impulses. Since all image sources are identical to each other, the
primary source must merely be shifted in space in order to generate the desired sound
�eld at the receiver position r′. This can be written as a convolution of G(r, r′) with
delta functions, i.e. a sum of shifted Green's functions, for D = 3 as:

G(r, r′) = G(r, r′) ?
D−1∏
i=0

∞∑
l=−∞

δ(ri ± 2liLi)

2D

= G(r, r′) ?
∞∑

l=−∞

δ(x± 2lxLx)δ(y ± 2lyLy)δ(z ± 2lzLz)

8
, (60)

where (r1, r2, r3) have been de�ned as (x, y, z). Eq. 60 is equivalent to Eq. 54 from Sec-
tion 3.2, where the analogy between both domains becomes evident. A multiplication in
k-space with (kx, ky, kz) is equivalent to a convolution in space by (2lxLx, 2lyLy, 2lzLz).

3.4 Sparse Model Of A Room Response

As de�ned in [Org97], most acoustic measurements are carried out using omni-directional
sound sources and microphones. The idea of measuring a directional sound source with
a directional receiver is a very appealing idea since it represents reality in the sense of
natural radiation and perception of sound waves as it actually happens. The way sound
waves propagate away from a sound source will depend, in the general case, on the
source's geometry, i.e. its corpus, its orientation and, most importantly, on the wave-
length λ that determines the directionality of the radiated signal. 27 The same applies for
the reception of sound, which is why the next step consists on computing room impulse
responses with directivities.

27. For a detailed review of the directionality of a sound source and its relationship between the
signal's wavelength refer to [Goe06] or for the more general radiation patterns to [Wil99] et al.
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This computation technique is taken from [MZR12], where a new approach is proposed
in order to analyse spatial directions in room transfer functions with adjustable directiv-
ity patterns for both source and receiver. The advantage of such a measurement is the
ability to excite a speci�c path of the room. These directional loudspeakers may have
di�erent characteristics while the focus here remains to stay with spherical loudspeaker
arrays, which have been proven to be �exible in design, see [Zot09a].

The starting point for the next considerations is the representation of the room impulse
response described by Eq. 55. As seen in Section 3.3, each re�ection path is characterized
by an amplitude al and an arrival time tl. This representation is expanded by two
Cartesian unit vectors θT

Rl
= [cosϕRl

sinϑRl
, sinϕRl

sinϑRl
, cosϑRl

]T and ϑT
Sl

=
[cosϕ Sl sinϑ Sl , sinϕ Sl sinϑ Sl , cos θ Sl ]

T de�ned by the spherical angles. The idealized
sparse model is composed of individual re�ection paths. The directional impulse response
from source to receiver is a sum over all these paths and can be written as

h(t,θRl
,θ Sl) =

L∑
l

al δ(t− tl) δ(θR − θRl
) δ(θS − θ Sl), (61)

where the subscripts Rl
and Sl describe the relative position between the lth source and

receiver position and vice versa.

3.4.1 Directivity Patterns For Source And Receiver

The directivities for source and receiver are de�ned by gR(θR) and gS(θS). These angular
dependent functions are de�ned as

gR(θR) =

NR∑
n′=0

n′∑
m′=−n′

γ
(R)
n′m′ Y

m′

n′ (θR),

gS(θS) =

NS∑
n=0

n∑
m=−n

γ(S)nm Y m
n (θS). (62)

where Y m
n (θ) represent the spherical harmonics functions and (NR, NS) their maxi-

mal order. These orthonormal set of functions describe the spatial distribution of any
function de�ned on a sphere and are favoured given their convenient transform identity∫
S2 Y

m
n (θ) δ(θ − θn) dθ = Y m

n (θn).
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3.4.2 Directional Room Responses

In the beginnig there is the room impulse response as function of time. The room im-
pulse response h(t) becomes also an angular-dependent function h(θR, t,θS) as soon as
a directivity is given to the source and to the receiver, respectively.

The room impulse response is obtained by means of integration over the spherical surface
of the angular functions describing the directivities as:

h(t) =

∫
S2

∫
S2
gR(θR) h(θR, t,θS) gS(θS) dθR dθS. (63)

The directional RIR of the orders NR and NS is obtained when inserting Eq. 62.

h(t) =

∫
S2

∫
S2

∑
n′,m′

γ
(R)
n′m′ Y

m′

n′ (θR) h(θR, t,θS)
∑
n,m

γ(S)nm Y m
n (θS) dθR dθS

=
∑

n,m,n′,m′

γ
(R)
n′m′

[∫
S2

∫
S2
Y m′

n′ (θR)
L∑
l

al δ(t− tl) δ(θR − θRl
) δ(θS − θ Sl)

Y m′

n′ (θS) dθR dθS

]
γ(S)nm

=
∑

n,m,n′,m′

γ
(R)
n′m′

L∑
l

al δ(t− tl)

[∫
S2

∫
S2
Y m′

n′ (θR) δ(θR − θRl
) δ(θS − θ Sl)

Y m′

n′ (θS) dθR dθS

]
γ(S)nm

Making use of the transform identity of the spherical harmonics presented in Section 3.4.1
yields

h(t) =
∑

n,m,n′,m′

γ
(R)
n′m′

L∑
l

al δ(t− tl) Y
m′

n′ (θRl
) Y m

n (θ Sl) γ
(S)
nm

=
∑

n,m,n′,m′

γ
(R)
n′m′ h

n′m′

nm (t) γ(S)nm. (64)

The vectorized form of Eq. 64 with a sum over both pairs of indices reads as follows
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h(t) =

[
γ
(R)
n′m′

]T
n′m′

[
hn

′m′

nm (t)

]n′m′

nm

[
γ(S)nm

]
nm

= γT
R H(t) γS. (65)

Thereby contains γ the directivity function describing the radiation and sensitivity pat-
terns found at source and receiver positions, respectively.

3.5 Arbitrary Directivities

3.5.1 Spherical Harmonic Characteristics Employed For The ISM

The ISM can be used, as described in Section 3.3, for the simulation of room impulse
responses or transfer functions between sources and receivers with an omni-directional
directivity pattern. The principle remains the same when adding an angular dependent
sound radiation and reception of sound. The L number of image sources will produce
the sound �eld of a source with the directivity pattern of a spherical harmonic of the or-
der and degree (n,m) when applying an individual angular dependency or spatial weight
to all of them. The new source's �eld is simulated by evaluating the chosen radiation
pattern at all relative angles between image source and receiver. Similarely, a receiver
with a certain sensitivity pattern (n′,m′) can be simulated by evaluating the sensitivity
function at all inverse angles. The latter are measured for all image sources from the
receiver's point of view.

It is enough to mirror the source adequately, i.e., by taking into consideration its orien-
tation and angle dependency, in order to compute the RIR for a source with directivity
pattern. Contrarily, the receiver does not have to be mirrored. For instance a receiver
with the directivity pattern of a cardiod microphone can be simulated by applying a
directivity pattern like the one depicted in Fig. 9. The result is an additional weight to
the contribution of each source depending on the incident angle at the receiver position.
This is done by means of superposition as hnmn′m′(t) = h0000(t) + h0011(t) if the source fea-
tures no angle dependency.

The notation as presented in Section 2.3.4 was used for the implementation of all sim-
ulations of room responses done with the ISM. Thereby L represents the number of
sources considered, see Eq. 55, and θl the spherical coordinate vector of the l

th source.
The directivities describing the receiver's sensitivity are stored in Y(θR) and the ones
describing the radiation pattern of the source in Y(θS).

The latter are described by the Y m
n and Y m′

n′ spherical harmonic coe�cients for source
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and receiver, respectively. The result is a (NR + 1)2 by (NS + 1)2 by length t of the
signal matrix HY (t):

HY (t) =



h0,00,0(t) h1,−1
0,0 (t) h1,00,0(t) h1,10,0(t) . . . hNS ,NS

0,0 (t)

h0,01,−1(t) h1,−1
1,−1(t) h1,01,−1(t) h1,11,−1(t) . . . hNS ,NS

1,−1 (t)

h0,01,0(t) h1,−1
1,0 (t) h1,01,0(t) h1,11,0(t) . . . hNS ,NS

1,0 (t)

h0,01,1(t) h1,−1
1,1 (t) h1,01,1(t) h1,11,1(t) . . . hNS ,NS

1,1 (t)

...
...

...
...

. . .
...

h0,0NR,NR
(t) h1,−1

NR,NR
(t) h1,0NR,NR

(t) h1,1NR,NR
(t) . . . hNS ,NS

NR,NR
(t)



, (66)

where NR represents the maximal order of spherical harmonics coe�cients for the re-
ceiver and NS for the source accordingly. Eq. 66 represents a �nite resolution MIMO-
matrix 28. The advantage of the spherical decomposition representaion of hnmn′m′(t) lies
in the fact that it can easily be modeled as well as measured by means of spherical loud-
speaker and microphone arrays. The room response in its HY (t) form is a matrix that
contains individual room responses between sources and receivers with directivity pat-
terns described by spherical harmonics of the orders (n, n′) and degress (m,m′). These
can be superimposed at will in order to simulate room responses of arbitrary directivities.

3.5.2 Spherical Harmonics In The Far-Field

The far-�eld approximation of a point source's �eld on the basis of its spherical harmonics
coe�ciens reads as

lim
r→∞

p(r, ϕ, ϑ) =
e−ikr

r
D(ϕ, ϑ). (67)

Thereby represents D(ϕ, ϑ) the far-�eld directivity pattern. The latter is obtained from
Eq. 67 and the far-�eld approximation of the the Hankel functions hn(kr) the n

th order.
They constitute the radius-dependent solution to the 3-D wave equation. The Hankel
functions of the 1st and 2nd kind are computed via the sphericalBessel functions jn(x)
and yn(x) as follows:

28. Multiple-input and multiple-output matrix containing the room responses between all radiation
patterns (NS + 1)2 and all sensitivity patterns (NR + 1)2.
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h(1)n = jn(x) + iyn(x),

h(2)n = jn(x)− iyn(x). (68)

Further, the useful relationship h
(2)
n = [h

(1)
n ]∗ is derived from these identities. For a

detailed description of the angular- and radius-dependent solution of the wave equation
in the spherical coordinate system refer to [Wil99] et al. The expressions in terms of
trigonometric functions for the spherical Bessel functions are given by

jn(x) = (−x)n
(
1

x

d

dx

)n
sin(x)

x
and

yn(x) = − (−x)n
(
1

x

d

dx

)n
cos(x)

x
. (69)

The far-�eld directivity pattern of the spherical harmonics can be found with the far-�eld
approximation of the Hankel functions given by

lim
r→∞

h(2)n (kr) = lim
r→∞

[
h(1)n (kr)

]∗
= (−i)n+1 e

−ikr

kr
. (70)

The far-�eld directivity corresponding to the spherical basis solution h
(2)
n (kr)Y m

n (ϕ, ϑ)
hereby yields:

D̃(ϕ, ϑ) = lim
r→∞

[
reikrh(2)n (kr)

]
Y m
n (ϕ, ϑ)

=
(−i)n+1

k
· Y m

n (ϕ, ϑ). (71)

Obviously, except for the normalization term (−i)n+1

k
, the physical solution h

(2)
n (kr)Y m

n (ϕ, ϑ)
yields the same angular pattern as Eq. 67. To simplify things, near �elds were neglected
and this work only employs Eq. 67 with the ISM.

3.5.3 Multipole Characteristics For The RMM

The room reponse in shoebox shaped rooms with rigid walls can be computed with the
RMM via Eq. 49. This solution is valid for sources and receivers with omni-directional
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directivities only. The next step consists in upgrading the RMM in order to simulate
room responses of arbitrary directivities. These will be generated by means of the mul-
tipole characteristics presented in Section 2.3.1. This choice is backed up given the
form of the Green's function and its relationship with the monopole characteristic, from
which is possible to derive higher order multipole characteristics o�ering a higher spatial
resolution.

As a result, the simulated sound �eld will feature an angle-dependent distribution in 3-D
space. Multipole charateristics will be computed by derivating G(r, t) and thus ψl(r) and
ψl(r0) with respect to the coordinate axes. Once the derivatives have been made avail-
able, they can be superimposed resulting in direction-dependent radiation and pickup
patterns. The room responses can, if desired, undergo a conversion into the spherical
harmonic domain by means of the C-matrix in order to better evaluate the results at a
later stage. 29 The conversion procedure is treated in Section 4.3.1 as well as the analysis
method used for the room re�ections.

Formal Calculation Of Room Responses

The objective is to compute and store room responses between sources and receivers
with as many di�erent directivity patterns, i.e. for high order multipole characteristics,
in order to facilitate a great �exibility when designing room responses of arbitrary di-
rectivities by means of superposition. The multipole directivities shown in Fig. 4 can
be applied to a source by deriving ψl(r0) (l,m, n) times with respect to the (x, y, z)
coordinate axes. This also applies for the receiver, whose directivities are produced by
deriving ψl(r), respectively.

Formally, the Green's function for rectangular rooms consists of the space-coordinate-
and the time-coordinate-dependent parts. As a result, the expressions in the sum can
be derivated individually. It can be written as:

G(r, r0, t) =
L∑
ψ(r)ψ(r0) · g(t). (72)

The derivatives of Eq. 72 with respect to the coordinate axes are carried out in a straight-
forward manner. The next considerations are done for the x-axis only. The goal is thus
to present the derivation process, that when done for the y- and z-axis too, result in
higher order multipole characteristics. These can be freely applied to the point-to-point
solution. l derivatives of ψ(r) = ψ(x, y, z) with respect to the x-coordinate are carried
out as:

29. The conversion takes place with the c-coe�cients as discussed in Section 2.3.5.
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∂lψ(r)

∂xl
=

∂l

∂xl
cos(kxx) cos(kyy) cos(kzz)

= (kx)
l
[
cos(kxx) cos

(π
2
l
)
+ sin(kxx) sin

(π
2
l
)
(−1)l

]
· cos(kyy) cos(kzz).

(73)

The derivatives are done (l,m, n) times with respect to (x, y, z) and result in a multipole
characteristic of the order l + m + n. The latter is obtained when evaluating Eq. 73
for each of the cosine terms separately and thus for each of the derivative orders. The
multiple derivatives of ψ(r) are summarized as

∂l

∂xl
∂m

∂ym
∂n

∂zn
G(r, t) =

L∑
ψ(x, y, z) ψ(x0, y0, z0) g(t), (74)

with the multipole-based directivity de�ned as ψ(x, y, z) = ψx(x)ψy(y)ψz(z) and ψx(x) =
(kx)

l
[
cos(kxx) cos

(
π
2
l
)
+ sin(kxx) sin

(
π
2
l
)
(−1)l

]
. Multipole charateristics as written

in Eq. 74, are still frequency-dependent in the far-�eld, proportionally to 1
(iω)l+m+n . Nor-

malization in order to obtain frequency-independent multipole characteristics is discussed
in the next section.

3.5.4 Far-Field Normalization Of The Multipole Characteristics

The derivatives of the multipole characteristics as done in Section 3.5.3 result in a fre-
quency dependent weighting of the Green's function. This e�ect has to be compensated
in order to remove unwanted e�ects concerning the multipole's order l + m + n and
thus the number of derivatives. The relationship between higher order multipoles and
the monopole characterstic is known from Section 2.3.1, where the advantage of the
representation in Eq. 2.3.1 becomes clear.

This frequency weighting takes place when the Green's function is derivated and as a
consequence, multiplied with a factor proportional to k. With the purpose of analyzing
the weighting, a source is assumed to be along the z-axis meaning that x = y = 0. The
Green's function can be written as

G(r) =
e−ik cos(ϑ)z

z
. (75)

Now a dipole can be created by deriving Eq. 75 with respect to the z-axis. The result

is, from a proportional point of view,
∂

∂z
G(r) ∝ −ik cosϑ G(r). The angular portion
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cosϑ constitutes the angular dependancy of the function while the factor −ik represents
the unwanted weighting, which is stands in direct relationship to the derivatives. This
can be understood to be, based on Eq. 49, the number of derivatives l +m + n. The
normalization of the unwanted factor (−ik)l+m+n is removed, as an enhancement of
Eq. 2.3.1, by a multiplication with the factor 1

(−ik)l+m+n . This constitutes the far-�eld

normalization of the multipoles obtained by means of spatial derivatives.

Mlmn(r) =
1

(−ik)l+m+n

∂l

∂xl
∂m

∂ym
∂n

∂zn
G(r, t). (76)

The normalization factor can be decomposed in an analytical manner and written with
the wavenumber's identity as 1

−ik
= −c

iω
. The normalization in this form enables a prac-

tical representation given the known relationship between derivatives and the Fourier
transform. 30 Therefrom it can be concluded that a multiplication with 1

−iω
is equal to

an integration of the Green's function as (−c)
∫

dt.

The Green's function as written in Eq. 72 has been decomposed in a sum over the modes
indices (lx, ly, lz) and a time-dependent part. The advantage of this representation can
be explained by the normalization factor in form of an integral of G(r, t), which is applied
to g(t) only. The free-�eld solution given by Eq. 76 takes the following form

Mlmn(r, t) = (−c)l+m+n ∂
l

∂xl
∂m

∂ym
∂n

∂zn

∫
· · ·

∫
︸ ︷︷ ︸
l+m+n

G(r, t) ( dt)l+m+n (77)

and is understood to be the normalized solution under free-�eld conditions. The Green's
function as computed for rectangular rooms and thus a �nite number of modes L reads
as:

Mlmn(r, t) = (−c)l+m+n ∂
l

∂xl
∂m

∂ym
∂n

∂zn

L∑
g(r)

∫
· · ·

∫
︸ ︷︷ ︸
l+m+n

g(t) ( dt)l+m+n (78)

Eq. 78 is the multipole's identity as used for the simulations done in Section 4. The
integral with respect to time is carried out assuring causality as follows:

∫
· · ·

∫
︸ ︷︷ ︸
l+m+n

g(t) ( dt)l+m+n =

∫
· · ·

∫
︸ ︷︷ ︸
l+m+n

sin(ωlt)

ωl

( dt)l+m+n =

30. The Fourier identity of a derivative is given by (iω)
n ⇐⇒ ∂nx(t)

∂tn
.
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= u(t)

[
cos(ωt) sin

(
π(l+m+n)

2

)
(−1)l+m+n + sin(ωt) cos

(
π(l+m+n)

2

)]
ωl+m+n+1

. (79)
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Figure 21: Far-�eld normalization of the multipole derivatives.

The e�ect of the far-�eld normalization is illustrated in Fig. 21. Here the room impulse
response has been computed for a monopole receiver and a dipole source oriented in
the z direction. The black curves in Fig. 21 are the time domain signal and its Fourier
domain representation. The simulation was done with a frequency barrier of 800Hz and
a total of 1957 modes.

The wrongly normalized time domain signal of the dipole is considerably louder when
comparing it to the blue curve (monopole). The latter is the normalized version, for
which the frequency-proportional term has been compensated. The term is proportional
to the number of derivatives as 1

(−ik)l+m+n and thus to ω. The accentuation of the higher

frequency band can be clearly identi�ed in the frequency response diagram as a high-
pass characteristic. Therefore, the far-�eld normalization is absolutely necessary when
computing larger number of room modes and especially when directivities are applied
through high order derivatives. This e�ect is also discussed in Section 4, where the direct
in�uence of the modal frequencies is studied.
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3.5.5 Matrix Notation Of The RMM With Multipole Characteristics

Now it has become possible to simulate room impulse responses with directivity on
the basis of modes outlined by hlmn

l′m′n′(t), where the indices (l,m, n) give the multipole
characteristic of the source and (l′,m′, n′) the one from the receiver. From Section 2.3.3
it is known that a de�ned number of multipole characteristics will arise for a maximal
mutlipole order NMP . The computation of the room responses is carried out for all
radiating patterns applied to the source and all pickup patterns applied to the receiver.
Thus all possible combinations are computed and stored in the 3-D matrix

HM(t) =



h000000(t) h100000(t) h010000(t) h001000(t) . . . h333000(t)

h000100(t) h100100(t) h010100(t) h001100(t) . . . h333100(t)

h000010(t) h100010(t) h010010(t) h001010(t) . . . h333010(t)

h000001(t) h100001(t) h010001(t) h001001(t) . . . h333001(t)

...
...

...
...

. . .
...

h000333(t) h100333(t) h010333(t) h001333(t) . . . h333333(t)



. (80)

In Eq. 80 the maximal multipole order for the source N
(S)
MP and for the receiver N

(R)
MP

were exemplarily set to be 3. The higher the order, the more derivatives are needed
and thus the more computation capacity is necessary. The fact that multipoles form
an over-determined basis points out the redundancy of the directivities in this form and
thus from the data itself. Therefore another representation of HM(t) is desired.

HM(t) does not pro�te from the bene�ts of the spherical harmonic representation as
HY (t) does. Therefore a conversion by means of the C-matrix from a multipole- into a
spherical-harmonic based representation is advantageous. Each of the directional room
responses hlmn

l′m′n′(t) 31 with multipole characteristics can be trasformed into its spherical-

harmonic based equivalent hnmn′m′(t). The orders N
(S)
SH and N

(R)
SH can be determined

freely because the C-matrix is computed precisely with the dimensions corresponding
to the maximal orders. The latter will also determine the size of HY (t), which is a

(N
(R)
SH + 1)2 times (N

(S)
SH + 1)2 matrix. The di�erent dimensions can be explained by

the fact that multipoles are not orthogonal to each other and as a consequence form an
overdetermined set of functions. This becomes evident through analysis of the 2nd order
multipoles or quadrupoles, which when combined produce the monopole characteristic. 32

31. As discussed in Section 3.4.2, the �ve dimensions refer to the fact that h is a function of θR, t
and θS refered as a directional room impulse response.
32. Mp2,0,0 +Mp0,2,0 +Mp0,0,2 = Mp0,0,0. More to this subject can be found in [Zot14b].
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The transformation of the
(N

(R)
MP+1)(N

(R)
MP+2)(N

(R)
MP+3)

6
times

(N
(S)
MP+1)(N

(S)
MP+2)(N

(S)
MP+3)

6
matrix

HM(t)(t) is done for all source radiation patterns being received with all pickup patterns.
The conversion reads in its matrix notation as:

HY (t) = C(R) HM(t) CT
(S), (81)

where C(R) is the conversion matrix from the receiver side and C(S) the one from the
source side, respectively. In the same way as before, the subscript groups (l,m, n) and
(l′,m′, n′) refer to the derivatives in (x, y, z) while (n, n′) and (m,m′) indicate the
spherical harmonic order and degree, respectively.

It is important to remember that the solutions obtained with the RMM will ultimately be
transformed to a spherical-harmonic based representation in order to analyze its spatial
properties in a more pratical manner. Therefore, the conversion by means of the C -
matrix of the far-�eld multipole solution will correlate to the far-�eld solution obtained
on the basis of spherical harmonics in Section 3.5.2. The whole approach and the ben-
e�ts of this conversion is treated in Section 4.3.1.
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4 Room Response Simulations With Directivities

And Comparison

4.1 Absorbing Walls

As already stated throughout Section 3, the results are valid under the assumption of
totally re�ecting walls and that no energy is lost in the propagation �uid. In order to
obtain results that are valid in an environment where a heat exchange takes place and
absorbing materials are present, the re�ection coe�cient has to be taken into account.
The latter is widely used when considering wave propagation in a medium containing
discontinuities. Such a discontinuity is for a example a variation of the medium's density,
e.g. the transition of a wave propagating in air which impacts at a wall's surface.

4.1.1 Re�ection Coe�cient

The RIR can be expanded by introducing the re�ection coe�cient for the delimiting
surfaces of the room. This coe�cient indicates in which manner the medium reacts to
the incident wave and is de�ned as follows

Γ =
Z2 − Z1

Z2 + Z1

, (82)

where Z stands for the characteristic acoustic impedance 33 of a medium. In other words,
it is the ratio of the amplitude of the re�ected wave to the amplitude of the incident
wave. Its value range is Γ ∈ (−1, 1), with three extreme cases. These are

ρ =


1 → the wave is totally re�ected and no phase shift takes place,
0 → the wave is completely asborbed,

−1 → the wave is totally re�ecetd and receives a 180�phase shift.

For more information concerning the re�ection coe�cient and the acoutic impedance as
well as other acoustic factors and parameters refer to [KFCS00,Goe06].

Realistic results can be obtained by chosing a re�ection coe�cient for all six surfaces of
the rectangular room under consideration. For the ISM it means that each contribution
will be weighted in an individual manner, depending on the path between image source
and receiver. Thus the weighting factor is determined by the image walls 34 the sound

33. The acoustic impedance of a medium is de�ned as Z0 = ρ0c0, where the density ρ0 and acoustic
velocity c0 are specie�c for that medium precisely.
34. The image walls are used for the image process of the primary source. They can be seen in Fig. 6,

where they have been ploted to better illsutrate the method's notion.
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ray crosses before arriving at the receiver position. The ray's amplitude is being weighted
as the ray travels in space and through the image walls. Thereby represents the path
between image source and receiver a real re�ection of the ray in the room's surfaces.
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Figure 22: Contributions of the image sources for totally re�ecting walls.
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Figure 23: Contributions of the image sources for a set of re�ection coe�cients.
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The result of applying re�ection coe�cients to the ISM is exemplarily illustrated in
Fig. 22 and Fig. 23. The �rst RIR was computed for totally re�ecting walls, mean-
ing no weighting was applied to the individual contributions. The in�uence absorp-
tive materials have, can be seen in Fig. 23, where non-zero positive values smaller
than one were chosen for the re�ection coe�cient vector. The latter is de�ned as
ρT = [ρx1, ρx2, ρy1, ρy2, ρz1, ρz2]

T and consitutes the weights applied to each of the six
surfaces forming the rectangular room.

4.1.2 Auralization Of Room Modi�cations

An auralization algorithm enables the simulation and adjustment of the room's rever-
beration time for the simulated room transfer function. The goal of such algorithms is
to simulate di�erent reverberation times by modifying the early re�ections of a room
impulse response. These re�ections can be seen exemplarily in Fig. 18, where the vicin-
ity to the receiver position can be appreciated. They typically have a delay of about
5− 100ms after the direct sound has arrived at the receiver position. More information
concerning the importance of the early re�ections of room impulse responses and their
modi�cation can be found in [JW03,EWL05,SM07] et al.

The concept of auralization of room modi�cations is inspired from [PSJ13] and consists
on applying an exponential attenuation to the room impulse response simulated with
the RMM. In this article the envelope of a RIR is applied to other transfer functions.
Consequently, the room impulse response's reverberation time T60

35 and decay can be
modi�ed. This method has been evaluated and is supported by a series of psychoacous-
tical experiments from which was concluded that the algorithm delivers realistic results.
It has been conceived with the goal of auralization of room modi�cations in order to
evaluate them before actually executing them.

The method is carried out �rst by determining the arrival time of the direct sound tdir.
Every re�ection that arrives after tdir+5ms will be used to form the RIR's envelope. This
signal is then decomposed in several frequency bands where typically, a constant − Q
�lterbank like the 1

3
− octave �lterbank is employed. This can be explained by the

auditory �lterbanks 36 which also possess a constant Q − factor. The latter is de�ned
for typical auditory �lterbanks as

Q =
fc
∆f

!
= const. (83)

Hereby denotes fc the centre frequency at which the band-pass �lter is placed and ∆f

35. Time required for average sound in a room to decrease by −60dB after the source has stopped
radiating sound.
36. Non-uniform �lterbanks designed to imitate the frequency resolution of human hearing.
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its bandwidth. Once the reference RIR has been decomposed in frequency bands, the
multiple envelopes can be computed and applied in order to change the desired signal.
This corresponds to a modi�cation of the RIR's energy in each frequency band sepa-
rately. The new signal is obtained by adding all modi�ed frequency bands. The classical
structure of a RIR is illustrated in Fig. 24, where the direct sound, early re�ections and
difuse �eld are clearly identi�ed.

The result are two room impulse responses computed di�erently with the same acoustical
properties, i.e. with the same re�ection coe�cients and thus the same reverberation time
T60. The latter in its form after Sabine is de�ned as

T60 = 0.163
s

m
· V
αA

, (84)

where V is the room's volume, A is the area of all surfaces enclosing the volume and
α is the total absorption parameter found in the room. For other de�nitions of the
reverberation time refer to [Goe06,KFCS00].

Figure 24: Structure of a room impulse response.

The goal for this study would be to adapt the room impulse response valid for totally
re�ecting walls obtained by means of the RMM in order to meet the characteristics of
room transfer functions simulated with re�ection coe�cients ρ 6= ±1. Some of the ad-
vantages of this method are the ability of reshaping the RIR's envelope while maintaining
its �ne structure as well as its simple implementation. The main reason why a change in
the signal's envelope is favoured are the good results that are backed up by Pörschmann
in [PSJ13].

The implementation of the attenuation is done in form of an exponential function as:
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d(ε, t) = e−εt. (85)

Eq. 85 can be solved in this form with the de�nition of the reverberation time. The
attenuation ε can be found for the corresponding T60 by comparison of the amplitude

decrease of 10
−3 t

T60
!
= d(ε, t). Expanding this equation with eln yields

eln(10)
−3 t

T60 = eln(e
−εt)

e
−ln(10)·3 t

T60 = e−εt

−ln(10) 3 t

T60
= −εt

ε =
3 ln(10)

T60
. (86)

By choosing a value for T60 it becomes possible to solve for an attenuation factor. This
one was chosen to be 400ms for the simulations presented in Section 4.2. From this
choice it follows that ε ≈ 14. With this factor well-de�ned, it became possible to simu-
late room impulse responses with the RMM.

An equal attenuation was achieved for the ISM by �nding the corresponding re�ection
coe�cients. For this, the attenuation was chosen to be equal in every coordinate.
This means that both boundary conditions in (x, y, z) feature a re�ection coe�cient
(ρx, ρy, ρz). This approach supposes an attenuation proportional to the distance covered
by each re�ection and thus to the number of times the sound ray crosses the image
walls. The next considerations are done for the x-coordinate. The number of times a
sound ray is re�ected can be determined with room dimensions and speed of sound.
The contribution from the lth image source will be weighted l times. The re�ection
coe�cient reads ρlx = ρ

x
Lx . Given that the distance x = c · t, the exponential weighting

can be written as ρ
ct
Lx

!
= e−εt. The latter equation can be solved to �nd the individual

re�ection coe�cient of every room dimension as:

eln(ρx)
ct
Lx = eln(e

−εt)

e
ct
Lx

·ln(ρx) = e−εt

ct

Lx

· ln(ρx) = −εt

ρx = e
−εLx

c . (87)
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4.2 Room Impulse Responses And Room Transfer Functions

Next, the results of both methods are presented. The values obtained for ε = 14 follow
from Eq. 86 and from the choice for the room dimensions (Lx, Ly, Lz) = (4.5, 3.1, 2.2).
As a result the re�ection coe�cients are ρT = [0.81, 0.81, 0.87, 0.87, 0.9, 0.9]T. Such
re�ections coe�cients represent very little absorption by the room walls and therefore a
long reverberation time T60 ≈ 400ms for a rather small environment.

4.2.1 Simulations With The ISM

The next simulations were done using the ISM and by varying the number of image
sources. The number of these is determined by the number of periodic blocks placed
around the receiver position. Greater delays are visible in Fig. 26, where number of image
sources has been increased considerably. In their time-domain representation there are
no further e�ects worth mentioning. The Fourier representations reveal a �ner structure
given for the transfer functions computed with a greater number of image sources. This
seems to be the case for both the simulations done without directivity patterns, as for
the case where both source and receiver feature a directional radiation and sensitivity
pattern.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−150

−100

−50

0

50

100

150

time [s]

am
pl

itu
de

216 image sources

 

 omni
dipole

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−100

0

100

time [s]

am
pl

itu
de

1000 image sources

 

 
omni
dipole

Figure 25: RIR computed with 216 (above) and 1000 (bellow) image sources.
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Figure 26: RIR computed with 2744 (above) and 5832 (bellow) image sources.
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Figure 27: Fourier representation of the curves in Fig. 25.
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Figure 28: Fourier representation of the curves in Fig. 26.

4.2.2 Simulations With The RMM

The RMM on the other hand seems to be more dependent on the sum's truncation. At
�rst, simulations with greater barrier frequencies were planned. The personal computer
used for the simulations was not able to conduct compute transfer functions for more
than 5000 room modes. This is partly due to its limitations but also in the programming
itself. A maximal computation of 7000 room modes was possible using a more powerful
computer and by storing the contents in a separate variable of a about 1GB.

The time domain signals feature a great waviness for higher barrier frequencies. This
can be explained by the density of the room modes, which will increase for higher
frequencies. The in�uence of the truncation in the modal domain is clearly visible in
the time-domain representations. The bandwidth covered increases with the number
of room modes considered but there is no clear bene�t from the computations done
with more room modes. A further analysis with a considerably increase of the barrier
frequency is needed in order to fully understand the in�uence of the room modes. There
is no great di�erence between the upper curves in Fig. 31 and the lower curves in Fig. 32
other than the frequency up to which the room modes are considered. Some of the
notches vary but in an unde�ned manner and most likely because of the in�uence the
room modes have on each other. The lower they are, the greater they are likely to have
an in�uence given their greater magnitude and spectral distance from each other. The
greatest di�erences are found between 1000 and 3000 modes. An increase of the barrier
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frequency does not seem to have a great in�uence, at least not for this con�guration.
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Figure 29: RIR computed with 1000 (above) and 3000 (bellow) modes.
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Figure 30: RIR computed with 5000 (above) and 7000 (bellow) modes.
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Figure 31: Fourier representation of the curves in Fig. 29.
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Figure 32: Fourier representation of the curves in Fig. 30.
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4.2.3 Direct Comparison Between The RMM And The ISM

The direct comparison of both methods seems to provide more information concerning
their accuracy. This section shows the previous results contrasting both methods. As
expected, the accuracy of the ISM increases with the number of image sources. As seen
in Fig. 34, it approximates the RMM with 7000 room modes pretty well and still remains
a rather easy task for the computer. Also, it maintains its energy levels for more complex
simulations as one can appreciate in the time domain signals.

In contrast, the RMM seems to produce the same results while keeping its frequency
bandwidth limitated. Also, the time domain signals become louder the more room
modes are taken into consideration. This unwanted e�ect constitutes a drawback to
this method as well as the fact that it represents a greater challenge for the computer.
Concerning the direct sound one can say that both methods are able to model the di-
rect sound with a certain accuracy. This is true for both the omni-directional case as
well as for the simulations done with directivities. Both the spherical harmonics as well
as the multipole characteristics seem to yield similar results for their 1st order directivities.

The �ltering e�ects introduced in Section 3.1.3 are still noticeable, especially for the
ISM, where the cut-o� frequency is set at half the barrier frequency.
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Figure 33: Onmi-directional room impulse responses.
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Figure 34: Fourier representation of the curves in Fig. 33.
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Figure 35: Directional room impulse responses.
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Figure 36: Fourier representation of the curves in Fig. 35.

4.3 Analysis Of The RIR In The SH-Domain

From Eq. 65 it becomes clear that directional room response can be analyzed at source
and receiver position for every time instant t. The advantage of such a representation
is that the room response can be analyzed in space with beam directions of �nite-order.
These beam directions θBR and θBS are described using the spherical harmonic functions
of the orders (n, n′) and degrees (m,m′) as follows

γ
(R)
n′m′ =Y

m′

n′ (θBR)

γ(S)nm =Y m
n (θBS). (88)

The directional room impulse response will be maximal if the chosen time t corresponds
to an arrival time tl and both beam directions θBR and θBS are equal to the lth radiation
incident angle θRl

and to the receiving angle θ Sl .
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4.3.1 Energy Histogram

The idea behind the analysis of room transfer functions by means of an energy histogram
consists in representing all squared contributions and reception of directional sound at
the source and receiver positions, respectively. This is done by integrating the squared
directional room response h2(θR, t,θS) over the spherical surface. The so-called energy
histogram is de�ned for the receiver side

h2(θR, t) =

∫
S2
h2(θR, t,θS) dθS and from the source side as (89)

h2(θS, t) =

∫
S2
h2(θR, t,θS) dθR. (90)

Eq. 89 describes all squared contributions of directional sound which are received at θR.
On the other hand Eq. 90 indicates all contributions of directional sound being radiated
at θS and that will be picked up at the receiver position by a directional receiver.

The energy histograms are obtained with Eq. 88 and by exploating the orthonormality
property of the spherical harmonics

∫
S2 Y m

n (θ)Y m′

n′ (θ) dθ = δmm′

nn′ to

h2(θR, t) =Y
m′

n′ (θR)
∑
nm

hn
′m′

nm (t) hn
′′m′′

nm (t) Y m′′

n′′ (θR)

h2(θS, t) =Y
m′

n′ (θS)
∑
n′m′

hn
′m′

nm (t) hn
′m′

n′′m′′(t) Y m′′

n′′ (θS), (91)

where δmm′

nn′ is a double Kronecker delta function 37. Eq. 91 can be written in a vector-
ized form as:

h2(θR, t) = yT(θR) H(t) H(t)T y(θR) (92)

h2(θS, t) = yT(θS) H(t)T H(t) y(θS). (93)

The whole derivation of the results obtained above can be found in Appendix B. Both
equations can understood to be the squared contributions of directional sound at from
the source and receiver point of view.

37. Function named after the German mathematician Leopold Kronecker. It is de�ned as δmm′

nn′ =

δnn′ · δmm′ and δnn′ =

{
0 if n 6= n′,

1 if n = n.
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EH For The ISM

Illustrated in Table. 1 and Table. 2 are some of the early re�etions as well as the di-
rect path between the source and receiver position. The re�ecting surface is painted
with a pale blue color in the left column. The corresponding energy histograms can
be found to the right, where the �rst one indicates the orientation of directional sound
received at the time of energy contributions. Likewise, the histogram to the right indi-
cates the energy quantity and its orientation from the source point of view. One can see
the great accuracy given for the ISM, for which all of the re�ections are clearly identi�ed.

Here, the room impulse responses are illustrated without the �ltering introduced in Sec-
tion 3.1.3. This is the case in render possible an unaltered comparison with the RMM.

EH For The RMM

The RMM lacks accuracy in the time domain given the modal truncation of the sum.
Thus a worse identi�cation of the early re�ections can be expected for low barrier fre-
quencies such as fg ≈ 1250Hz. Illsutrated in Table. 3 and Table. 4 are the same
scenarios as before. This time the directional transfer functions obtained with the RMM
have been converted with the C-matrix into their spherical harmonic representation. The
same analysis introduced in Section 4.3.1 is hence possible.

Both methods can be compared now with respect to their spatial resolution for simu-
lations with sources and receivers of arbitrary directivities. When analysing the results
it becomes clear that a truncation in the frequency domain results in an aggravation of
the spatial capacities of the RMM. The tendency is a mismatch concerning the accurate
localization of the energy's orientation with respect to the source. The receiver side is
not completely wrong, but is not as accurate as the energy histograms obtained with
the ISM.
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Path h2(θR, t) h2(θS, t)

1

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

2

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

3

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

Table 1: Energy histograms of the ISM.
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Path h2(θR, t) h2(θS, t)

4

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

5

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

6

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

Table 2: Energy histograms of the ISM.
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Path h2(θR, t) h2(θS, t)

1

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

2

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

3

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

Table 3: Energy histograms of the RMM.
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Path h2(θR, t) h2(θS, t)

4

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

5

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

6

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

−180° −90° 90° 180°

90°

−90°

0°

−45°

45°

Table 4: Energy histograms of the RMM.
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5 Resume And Outlook

Room impulse responses with and without directivites were simulated using both meth-
ods discussed throughout this work. No convergence problems were encountered for
either method although important di�erences were found by means of their frequency
and time domain representations. According to the results presented in Section 4, the
ISM is able to produce a high accuracy concerning the early relfections of room impulse
responses. This is also true for sources and receivers of arbitrary directivites. The acu-
racy with respect to the room resonances will increase as soon as the number of image
sources becomes greater. Apparently it is enough to consider about 2000 image sources
in order to match the frequency resolution of the RMM.

Problems with respect to the convergenve nature of the method were not found. An
increase of the number of image sources only implies an extension of the reverberation
time. This last parameter depends again on the re�ection coe�cients themselves. The
values that result from Section 4.1.2 correspond to a room with reverberant character-
istics.

The simulation of room transfer functions with directivites on the basis of modes were
done with the RMM. The results were also converted into the spherical harmonic domain,
where the analysis and direct comparison of both method's capacities is possible. The
results of the simulations done in Section 4.2 reveal a limitation concerning the satial
resolution and simulation of the early re�ections for low frequency barriers. The RMM
lacks of resolution in the time domain as a result of this band limitation. Also, no clear
amelioration comes from an extension of the frequency band and thus of the number of
room modes considered. An increase of the barrier frequency represents a suppresion of
erros in the lower frequency band by 3dB. A signi�cant improvement is for this reason
di�cult to achieve.

At this point, little can be said regarding the number of room modes necessary in order
to achieve a certain accuracy. The simulations were carried out with up to 7000 room
modes, still achieving great results compared to the ISM. The choice of room resonances
other than the natural sequence that arises from the room geometry is not a possibility.
The balance between them given by their correlation, would be disrupted and thus the one
governing the acoustic characteristics of the given situation. The question concerning
the convergence behavior remains open and could be extended with far more complex
simulations and studies.
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Appendix

A Green's Function Of A Point Source In Free Field

The whole idea behind Eq. 39 is to obtain the Green's function G(r, t) by means of
integration. What is done really is an inverse Laplace and inverse Fourier transforms of
g(k, s). The latter is obtained by Laplace and Fourier transforms of the general equation
given by Eq. 10. The following two transform properties

dnf(t)

dtn
⇐⇒ (s)n · F (s)− f(0) and (94)

∂f(r)

∂x
⇐⇒ (ikx) · F (k) (95)

can be applied in Eq. 11 to L = ∂2

∂t2
− c2∆ resulting in

s2g(k, s)− c2(iκ)2g(k, s) = 1

g(k, s)
[
s2 + c2κ2

]
= 1

g(k, s) =
1

s2 + c2κ2
, (96)

where κ ≡ ‖k‖ =
√
k2x + k2y + k2z . The poles of the Green's function can be computed

once g(k,s) has been made available in this form . By doing so an easier calculus of
Eq. 39 becomes possible.

s2 + c2κ2 !
= 0 ⇐⇒ s1,2 = ±

√
−c2κ2 = ± icκ

The �rst part of the integral corresponds to the inverse Laplace transform and reads as
follows

1

2πi

∫ ∞

−∞
est g(k, s) ds =

1

2πi

∫ ∞

−∞

est

(s− icκ)(s+ icκ)
ds. (97)

Solving Eq. 97 becomes possible by using the Redisue Theorem. The latter says that a
function resisting the techniques of elementary calculus can be evaluated by expressing
it as a limit of contour integrals. The theorem is put down in a mathematical way in
Eq. 98
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∮
γ

f(z) dz = 2πi
n∑

k=1

Res {f(z), zk} , (98)

with f(z) = ezt

(z−icκ)(z+icκ) . The residues for both poles can now be computed.

Res {f(z = icκ} = lim
z→icκ

(z − icκ) · f(z) = lim
z→icκ

ezt

z + icκ
=

eicκt

2icκ

Res {f(z = −icκ} = lim
z→−icκ

(z + icκ) · f(z) = lim
z→−icκ

ezt

z − icκ
= − e−icκt

2icκ

These results are inserted the line integral of f(z) over the closed curve γ from Eq. 98
as follows

∮
γ

f(z) dz = 2πi

(
eicκt

2icκ
− e−icκt

2icκ

)
=

2πi

cκ
sin(cκt).

The �rst part of the integral g(k, t) is solved with the last result and Eq. 97

1

2πi

∮
γ

f(z) dz =
sin(cκt)
cκ

. (99)

The next step is solving the inverse Fourier Transform with respect to the coordinate
system. Interesting for the considerations made in this study is the three dimensional
case. The result from the �rst part of the integral inserted in Eq. 39 yields

G(r, t) =
1

(2π)d

∫
Rd

eik
T
r
sin(cκt)
cκ

dk. (100)

Applying the derterminant of the Jacobian matrix from Appendix B to Eq. 100 results
in

G(r, t) =
1

(2π)3

∫ π

0

∫ 2π

0

∫ ∞

0

eik
T
r
sin(cκt)
cκ

κ2 dκ dϕ sinϑ dϑ. (101)

The integral depending on the azimuth angle ϕ is solved here by chosing r along the
z-axis, thus rT = [0, 0, r cosϑ]T.

G(r, t) =
1

(2π)2c

∫ π

0

∫ ∞

0

κ eiκ·r cosϑ sin(cκt) dκ sinϑ dϑ
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Next the integral with respect to the zenith angle ϑ can be solved given the previous
choice of r. This angle can henceforth take only two values, i.e. 0 or π. This fact
together with z = cosϑ and thus dz

dϑ
= − sinϑ results in

G(r, t) =
−1

(2π)2c

∫ ∞

0

∫ 1

−1

κ eiκ·r·z sin(cκt) dz dκ

=
−1

(2π)2c

∫ ∞

0

[
κ eiκ·r·z

iκr

]−1

1

sin(cκt) dκ

=
1

(2π)2c

∫ ∞

0

[
eiκ·r − e−iκ·r

ir

]
sin(cκt) dκ.

Using the Euler identity sin(a) = eia−e−ia

2i
in the last equation results in

G(r, t) =
1

2π2cr

∫ ∞

0

sin(κr) sin(cκt) dκ,

and with the trigonometric relationship sin(α) sin(β) = cos(α−β)−cos(α+β)
2

it is possible
to write

G(r, t) =
1

4π2cr

∫ ∞

0

[
cos(κ(r − ct))− cos(κ(r + ct))

]
dκ

=
1

4π2cr
π

[
δ(r − ct)− δ(r + ct)

]
.

The next relation is the regularized solution of the integral in form of a distribution. It
reads as

∫∞
0

cos(κγ) dκ = π δ(γ). The previous result for the Green's function can be
simpli�ed by its causality property 38 and since this solution is valid for r > 0 only, the
second term can be omitted. The solution for the Green's function of a point source in
free-�eld reads as follows

G(r, t) =
1

4πcr
δ(r − ct). (102)

38. Causality states that G(r, t)
!
= 0 for all t < 0.
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B Jacobian Matrix

The Cartesian coordinate system is directly related to the Spherical coordinate system
via Eqs. 103

x = r sinϑ cosϕ,

y = r sinϑ sinϕ and

z = r cosϑ. (103)

Thereby denotes ϕ the azimuth and ϑ the zenith angle. The Jacobian matrix JF (r, ϕ, ϑ)
of a function F de�ned in R3 is given by

JF (r, ϕ, ϑ) =


∂x
∂r

∂x
∂ϑ

∂x
∂ϕ

∂y
∂r

∂y
∂ϑ

∂y
∂ϕ

∂z
∂r

∂z
∂ϑ

∂z
∂ϕ



=

sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0

 .
(104)

Its determinant as used in Eq. 101 is computed as follows

det|JF (r, ϕ, ϑ)| = r2 cos2 ϑ cos2 ϕ sinϑ+ r2 sin3 ϑ sin2 ϕ

− (−r2 sinϑ cos2 ϑ sin2 ϕ− r2 sin3 ϑ cos2 ϕ)

= r2 sin3 ϑ(sin2 ϕ+ cos2 ϕ) + r2 cos2 ϑ sinϑ (cos2 ϕ+ sin2 ϕ)

= r2 sinϑ(sin2 ϑ+ cos2 ϑ)

= r2 sinϑ. (105)

The volume element in 3-D space is an expression of the form

dV = dx dy dz, (106)

and in its spherical form

dV = det|JF (r, ϕ, ϑ)| dr dϑ dϕ
= r2 sinϑ dr dϑ dϕ. (107)
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C Energy Histogram

The notation in a vectorized form of h(θR, t,θS) = γT
RH(t)γS remains as presented in

Section 3.4.2 the same. The squared contribution of directional sound being radiated by
a directional source and measured by a directional receiver are obtained at the receiver
position by means of integration as follows:

h2(θR, t) =

∫
S2
h2(θR, t,θS) dθS

=

∫
S2
γT
RH(t)γS · γT

SH(t)TγR dθS

= γT
RH(t)

∫
S2
γS γT

S dθS H(t)TγR.

The last integral is solved with the choice of spherical harmonics for the computation
of the room impulse response with directivities. This is written in a vectorized form as
γ = y and by making use of the orthonormality property of the spherical harmonics it
yields

h2(θR, t) = yTR H(t)

∫
S2
yS yTS dθS H(t)T yR

= yTR H(t) H(t)T yR. (108)

In the same manner, the contribution of directional sound at the source position is
calculated:

h2(θS, t) =

∫
S2
h2(θR, t,θS) dθR

=

∫
S2
γT
RH(t)γS · γT

SH(t)TγR dθR

= yTSH(t)T
∫
S2
yR yTR dθR H(t)yS

= yTS H(t)T H(t) yS.

The last result constitutes one of the tools used for analyzing the re�ection paths of the
ISM as used in Section 4.3.1.


