
Prosodic and Paralinguistic

Speech Parameters

for the Identi�cation of

Emotions and Stress

Johannes Jany-Luig

A thesis presented to the

University of Music and Performing Arts, Graz

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

Doctoral Committee: Prof. Robert Höldrich

Institute of Electronic Music and Acoustics, KUG

Prof. Gerhard Eckel

Institute of Electronic Music and Acoustics, KUG

Prof. Sonja A. Kotz

Faculty of Psychology and Neuroscience, Maastricht University

June, 2017





Abstract / Zusammenfassung

In addition to what we say, it is mainly the way we say it which reveals how
we think about the information we are just transmitting. A human listener
uses prosodic and paralinguistic cues to decode this information, probably
supported by information from facial expressions and gestures. This thesis
explores to which extent a computer can solve the task of emotion and stress
recognition from the human voice alone. Linguistic andmusical approaches
to grasp “prosody” are brought together and implemented as algorithms.

Based on speech data both from an existing database of emotional speech
and a self-created database of speech under stress, 27 different speech pa-
rameters are calculated from recorded speech signals without any meta-
information. These parameters are then investigated regarding their ability
to differentiate between different emotional states or different levels of cog-
nitive stress.

Beim Sprechen vermitteln wir neben dem eigentlichen Inhalt durch un-
sere Sprechweise, wie wir zu dem Gesagten stehen. Ein menschlicher Hörer
erkennt dies durch Interpretation prosodischer und paralinguistischerMerk-
male der Sprache sowie an unserer Mimik und Gestik. In dieser Dissertation
wird untersucht, inwieweit ein Computer in der Lage ist, Emotionen und
Stress rein anhand der Sprechweise zu erkennen. Dazu wird Prosodie auf
linguistische wie musikalische Art interpretiert und in Form von Computer-
algorithmen implementiert.

Sprachdaten aus einer existierenden Datenbank mit emotionaler Sprache
sowie aus einer selbst erstellten Datenbank mit Sprache unter Stresseinfluss
dienen als Grundlage für die Berechnung von insgesamt 27 verschiedenen
Sprachparametern, welche anschließend hinsichtlich ihrer Fähigkeit, zwis-
chen verschiedenen emotionalen Zuständen oder Stress-Levels unterschei-
den zu können, untersucht werden.
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1. Introduction

Speech originates from a�ect. This is why a speaker's emotional state and stress

level are re�ected in the prosodic and paralinguistic characteristics of the voice.

This chapter presents an overview of relevant research on emotion and stress

recognition from the speech signal, discusses various models of emotions and

stress, and summarizes the aims and contributions of this thesis.

1.1. Setting the Scene

Imagine sitting in a coffee bar and overhearing a telephone conversation at
the table behind you. The person does not speak your language, neither do
you know who’s talking at the other end of the line. But you will probably be
able to assess the current mood of that person; independent of her age and
sex. Where have you learned how to do that? Which acoustical cues indicate
that the person just received some good news? The answer will probably be:
“it’s in the way (s)he talks”.

In addition to what we say, it is mainly the way we say it which reveals how
we think about the information we are just transmitting. According to Drach
(1926), all speech originates from expressions of emotions which have been
weakened and blurred through education and socialization. Any statement
wemake canbemarked as important or dispensable, as serious or ridiculous,
as substantiated or questionable, by sendingmeta informationwhich are en-
coded in the acoustic properties of our speech. Similarly, one might be able
to tell from our voice that we are unable to cope with a complex task we’re
given, since our main attention is currently centered on this task and not on
our phrasing

While a human listener usually could tell the speaker’s emotional state dur-
ing a conversation without circumstances, this is a non-trivial task for a ma-
chine. Focusing on the voice implies that the computer will get no contextual
information as facial expressions, gestures or any information on the spoken

1



1. Introduction

content. Furthermore, a machine by itself has no experience in differentiat-
ing between emotions; we have to introduce some a-priori knowledge. This
raises the question what kind of experience a human listener utilizes when
judging the emotional state of a speaker — not to mention that the notion of
"emotions" is not universally agreed.

So, why should we make an effort in teaching a computer to recognize emo-
tions and stress levels?

As a scientist, I have to respond: “because it’s interesting to see how far we
can get in trying this!”, which should be the general academicmindset. The
behavioral sciencesmight be interested in finding outwhich acoustic param-
eters are used to signal emotions or stress; if there are differences between the
sexes or between cultures, and which of these parameters can be controlled
consciously and which not. In applied computer science, people try to pro-
duce synthesized speech which sounds as natural as possible.

From a clinical point of view, the speech signal is a physiological marker
which can be obtained in a non-invasive, non-intrusive and also non-expen-
sive way. Mental disorders such as depression have complex clinical char-
acterizations and symptoms which are not directly measurable; the patient’s
voice is one of several indicatorswhich is subjectively judgedby the therapist.
Here, an objective analysis result could facilitate more accurate diagnoses.
Speechmonitoring for the detection of voice activity or panic might be a po-
tential feature of ambient assisted living systems which aim to support the
everyday life of elderly and disadvantaged people in a non-intrusive way.

In many areas where safety is of the essence, human performance has be-
come the limiting factor in a technologically advanced and highly automated
environment. In aviation, aircraft pilots and air traffic controllers are respon-
sible for logical reasoning and decision-making in short periods of time in a
noisy high-stress environment, but their ability to respond is limited and de-
pendent on a variety of environmental factors. As a reason, the majority of
incidents and accidents can be traced back to human error rather than me-
chanical or technical failure. A speech monitoring system that evaluates in-
dicators of fatigue and excessive demand could be easily implemented, since
verbal communication is an integral part of the job and happens remotely;
meaning that the voice is recorded anyway.

Possible commercial applications include human-computer interaction sys-
tems as in call centers or for ticket reservation applications, where annoyedor
over-challenged customers could be automatically handed over to a human
operator. Thought one step further, video game manufacturers could get re-
liable feedback from their users on the acceptance of certain features or if the
level of difficulty has been chosen appropriate.

2



1.1. Setting the Scene

As evident from this multitude of potential applications, the question in
which manner and to what extent emotions and stress are reflected in the
human voice is investigated in different fields of research. Roughly group-
ing them by focus, we have the "basic research" group on the one hand,
including phoneticians1, psychologists, and medical researchers, who are
concerned with the physical properties of speech sounds and typically ana-
lyze data under laboratory conditions to demonstrate fundamental concepts
and relationships. On the other hand, we have the "applied research" group
including engineers and computer scientists who are mainly interested in
the feasibility of methods and algorithms. Research principles and standards
differ greatly between these two groups; too often, basic research produces
in-depth analyses of a few selected phrases only (which makes it hard to
generalize the findings), while applied research produces results which allow
conclusions to be drawn on the performance of an algorithm, but not on the
fundamental problem.

The aim of this thesis is to contribute to a mutual understanding of both ne-
cessities and possibilities in this field. I want to introduce some general lin-
guistic knowledge to automated speech analysis of large databases by con-
sidering not only basic acoustic properties of the speech signal, but prosodic
variableswhich take human speech production andperception into account.
At the same time, I hope to provide a tool for linguisticallymotivated research
which facilitates the analysis of larger amounts of spokenutterances andeven
spontaneous speech by removing the need for metadata such as annotated
syllable bounds or prominence levels.

1In simple terms, phoneticians are linguists who study the production and perception of hu-
man speech, while phonologists are concerned with the systematic organization of funda-
mental sounds and linguistic meaning.

3



1. Introduction

1.2. Prosody and Paralinguistics

1.2.1. Terms and De�nitions

Unfortunately, key terms for the description of the way we say it are some-
times used synonymously or even contradictory in the linguistic literature.
What they all have in common, however, is their suprasegmentalnature; they
superpose the single speech segments 2, but are not temporally restricted to
them.

I will use the following terms throughout this thesis:

Prosody (from ancient Greek: proso-idía, “song sung to music”) represents
themelodic, rhythmic, and dynamic properties of speech in general, of a cer-
tain language, or of a single utterance. The prosodic variables are intonation,
duration, and prominence.

I Intonation is a term for all melodic aspects related to speech. This def-
inition corresponds to what some publications refer to as intonation in
the narrower sense, whereas intonation in the wider sense is equivalent
to the definition of prosody as explained above.

I Duration is related to the rhythmic phenomena of an utterance. The
basic unit for the impression of rhythm in speech is the syllable; how-
ever, we will see that the exact determination of rhythmic "events" is a
non-trivial task.

I Prominence describes the extent to which a syllable or a word percep-
tually "stands out" of its environment (Terken, 1991). This term is equiv-
alent to linguistic stress which can often be found in the literature as
well.

In contrast to prosody, paralinguistic speech properties do not affect the lin-
guistic identity or meaning of what is said (Schötz, 2003).

I Timbre is a term to describe those (mainly) spectral properties which
make up the characteristic "tone" of a sound. Interestingly, the only
technical description of timbre is a negative definition: "Timbre is that
attribute of auditory sensation in terms of which a listener can judge
that two sounds similarly presented and having the same loudness and
pitch are dissimilar." (ANSI, 1960).

2A speech segment is defined as “any discrete unit that can be identified, either physically or
auditorily, in the stream of speech” (Crystal, 2011). The basic phonetic unit is the phone,
but to explore the musical aspects of speech, we will treat syllables as single segments.

4



1.2. Prosody and Paralinguistics

I Voice quality coincideswith timbre and is often used in a clinical sense;
it generally refers to voicing characteristics which are associated with
different vibratory patterns of the glottis.

I Speaker-specific characteristics as pitch range, average loudness or
general speaking tempo emerge from the same acoustic and percep-
tual quantities as the prosodic variables, but are constant over a longer
term and can thus be regarded as stationary characteristics in this con-
text.

The following chart summarizes themain linguistic terms which will be used
throughout this thesis.

SUPRASEGMENTAL SPEECH FEATURES

PROSODY

Intonation Duration Prominence

Pitch Range Average Loudness Speaking Tempo ...

PARALINGUISTICS

Timbre / Voice Quality

Speaker-Specific Characteristics

harsh whispery breathy creaky ...tensebright

Figure 1.1.: Suprasegmental features.
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1. Introduction

1.2.2. The Role of Prosody in Speech

Prosody has primarily a linguistic function which corresponds to punctua-
tion in written text and can be demonstrated by reading out the following
three sentences:

1. awomanwithouthermanisnothing
2. a woman without her man is nothing
3. A woman: without her, man is nothing.

Speech itself is a continuous, complex flow of sounds. Without any prosodic
cues, our brain has just asmuch difficulties to decode this flow intomeaning-
ful chunks of information as you have had to read the first sentence above. By
bringing melody and rhythm into the language, prosody does not only facil-
itate intelligibility, but may also influence the meaning of a statement, as a
comparison of the second and the third sentence shows.

Prosodic cues on the sentence level put the focus on a specific word to deter-
mine the meaning of the sentence; they also allow to differentiate between
different sentence types by distinguishing a plain statement from a ques-
tion or an exclamation. Speech pauses are indicated by periods, commas,
colons and hyphens; question or exclamation marks are global signs for the
melodic contour throughout the sentence or the emphasis given to what is
said. Prosody on the syllable level realizes pronunciation rules by emphasiz-
ing single syllables while attenuating others. Interestingly, those pronunci-
ation rules are usually not explicitly marked in normal orthography; except
for some languages which use diacritics to mark the accented syllable within
words (as, e.g., in the French word café).

In this thesis, however, I concentrateon theparalinguistic functionofprosody.
The statement “oh, that’s great!” can be uttered in different ways to demon-
strate joy, frustration, or indifference, just by changing somemelodic param-
eters. At this point, it is important to note that the prosodic parameters to
be investigated will hopefully reflect the speaker’s emotional state or stress
level, but also convey the realization of pronunciation rules on the syllable
level (which are assumed not to be affected by emotions or stress). An at-
tempt to separate the linguistic from the paralinguistic aspects will be the
use of relative values instead of absolute values (see section 5.3.2).

As mentioned above, timbre has no linguistic function at all. It constitutes
the identity of a speaker’s voice and may point to his or her emotional state
as well, but the meaning ofwhat is said will not be affected by timbre.

6



1.2. Prosody and Paralinguistics

1.2.3. Acoustic, Auditive and Prosodic Variables

Kehrein (2002) created a prosody model for German as an “integrative pro-
posal for the reassignmentof aspectsonwhichconsensusmightbeobtained”.
The model, shown in Fig. 1.2, differentiates between form (acoustic and
prosodic variables) and function (discrete prosodic units). This differentia-
tion is a controversial issue in the linguistic community (Mixdorff, 2002), but
we can neglect this discussion, as we will anyway concentrate on the form
component of this model here.

Acous�c

Variable

Prosodic

Variable

Prosodic

Units

Intensity Accents

Fundamental

Frequency

Intona�on Pa�erns,

Tones, Tone Accents

Measurable

Time

Prominence

Intona�on

Dura�on Quan�ty

FORM FUNCTION

Figure 1.2.: Kehrein's prosody model (adapted from (Kehrein, 2002))

Although this model is missing an intermediate layer of auditive variables, it
covers the important fact that the perception of prominence depends upon
all three acoustic variables. Since at least Abercrombie (1967), the linguis-
tic world is roughly divided into syllable-timed and stress-timed languages3,
with both English and German belonging to the latter class. This means that
speakers of English or German make use of all three possible ways of accen-
tuating a syllable, which includes the variation of intensity, fundamental fre-
quency, and syllable length.

To account for the fact that there is no linear relationship ofwhatwe canmea-
sure with a microphone and what we hear, I will extend Kehrein’s prosody
3Despite many a criticism in view of this hard categorization (and the fact that there exists
at least a third rhythmic type ofmora-timed languages), it is an indisputable fact that Ro-
manic languages as French or Italian soundmore "rhythmically even" than Germanic lan-
guages like English or German since there is less variation in syllable length.

7



1. Introduction

model by inserting a set of auditive variables in between the acoustic and
the prosodic variables, as depicted in Fig. 1.3. Auditive variables are calcu-
lated from acoustic variables using special formulas and filters which model
the nonlinear characteristics of human auditory perception, such that a lin-
ear change in an auditive variable (e.g., “twice as much”) leads to the same
perceived change. Detailed explanations of the auditive variables loudness,
pitch, and perceived syllable length as well as the underlying principles are
given in section 3.2. The question to what extent these individual variables
contribute to theprominenceof a syllable is discussed in section 3.5, andmay
be language-specific aswell as the result of an individual interpretationby the
speaker.

Acous�c

Variable

Audi�ve

Variable

Prosodic

Variable

Intensity

Fundamental

Frequency

Measurable

Time

Prominence

Intona�on

Dura�on

Loudness

Pitch

Perceived

Syllable Length

Figure 1.3.: Prosodic model as used in this thesis

To avoid confusion, the term variable will consistently be used for a gen-
eral speech property on the several levels — acoustic, auditive or prosodic—
which changes over time, whereas the termparameter implies its quantifica-
tion4. Thus, the parameter “declination” quantifies a certain attribute of the
auditive variable “pitch”which has for its part been derived from the acoustic
variable “fundamental frequency”, as visualized in Fig. 1.4. One can imagine
that the continuous and relatively smooth pitch contour in the bottom plot
matches our perception of speech melody much better than that bumpy and
interrupted fundamental frequency contour in the plot above; even if the lat-
ter is closer to the acoustic “truth”.

4In the literature, the term speech feature is also used frequently; it has the samemeaning as
speech parameter in our case.
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1.2. Prosody and Paralinguistics

PCM Audio Signal

Fundamental Frequency (Hz)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (sec) →

Pitch (Semitones)

Declination: -4.57 semitones/sec

Figure 1.4.: PCM audio signal (top plot), fundamental frequency contour (middle plot),

pitch contour (bottom plot), and declination value (below).
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1. Introduction

1.3. Emotions and Stress

The main hypothesis of this thesis is that the emotional state or stress level
of a speaker is reflected in “the way (s)he talks”. In order to find descriptive
speech parameters reflecting these influences, wemust understand the com-
monalities and divergences between emotions and stress. The interdepen-
dence of both is beyond question; reasons for their co-existence as separate
fields in the social sciences are mainly of historical nature. Lazarus (2006)
even argues that emotions such as anger, jealousy, shame, or sadness should
be called “stress emotions”, since they arise from stressful conditions5.

1.3.1. Emotions

From everyday experience, we can all tell that our emotions may be of vary-
ing intensity and quality. Furthermore, we often experience several emotions
at once andmay sometimes not be able to exactly describe “how we feel”. As
emotions play amajor role inmany applied fields from psychotherapy to ad-
vertising psychology, a variety of different emotion theories exists. Depend-
ing on the respective field of research, their focus is either on body responses
to a stimulus (physiological approach), brain activity due to a stimulus (neu-
rological approach), or the cognitive evaluation of the actual situation (cog-
nitive approach).

Emotions as Categories

Many of these emotion theories have in common that emotions are consid-
ered categorical, meaning that any emotional state can be attributed to a set
of basic emotions. This conjecture goes back to Darwin (1872), who postu-
lated that emotions were biologically determined and thus universal across
cultures. Ekman and Friesen (1971) tried to verify this theory by studying how
people fromdifferent cultures assign facial expressions to a specific emotion.
They were able to show that even subjects from a preliterate culture6 in New
Guinea provided results which agreed very well with those from college grad-
uates from Brazil, the United States, or Japan. The six emotion expressions
found to be universal included anger, disgust, fear, happiness, sadness, and
surprise; they are sometimes referred to as the “big six” emotions.
5Lazarus goes even further by stating that even “positive” emotions such as happiness are
related to stress in the way that we might fear that our happiness will eventually end. This
is a rather philosophical point in my view, hence I will focus on the “negative” emotions
when associating them with stress.

6A preliterate culture is a culture which does not have a written language.
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1.3. Emotions and Stress

Plutchik (1980) defined eight primary emotions in four pairs of opposites,
namely joy/sadness, trust/disgust, fear/anger, and surprise/anticipation.
By arranging them in a circumplex pattern such that the counterparts are
placed vis-à-vis, Plutchik created a three-dimensional conical model, where
the circular angle represents degrees of similarity among the emotions and
the vertical dimension indicates the intensity. When mapping the cone onto
a two-dimensional plane (as shown in Fig. 1.5), the blank spaces between the
cone ends can be filled with secondary emotions as blends of two adjacent
primary emotions.

Figure 1.5.: Two-dimensional mapping of Plutchik's cone of emotions (from Plutchik

(2001))

In the literature, many studies on emotions and speech use the following six
basic emotions: anger, anxiety, boredom, disgust, happiness, and sadness.
Compared to Ekman’s “big six” emotions, fear has been replaced by anxiety7,
and instead of surprise, we now have boredom as a new category.

7Psychologists might disagree that these terms are fully interchangeable, but for these basic
treatment of “emotions”, I will assume it to be equivalent.
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1. Introduction

Emotions as Dimensional Variables

As an alternative to strict categories, emotions can also be described as points
in a multidimensional emotion space. This dimensional interpretation has
the advantage that the intensity of an emotion can be described as well as
gradual transitions between emotions (Cowie and Cornelius, 2003). Virtu-
ally all researchers agree that there are at least two special characteristics of
emotions, namely their valence (or appraisal, evaluation; positive vs. neg-
ative) and their arousal (or activation, excitation; active vs. passive). Many
recent publications deal with an additional third dimension, dominance (or
potency,power ; strongvs. weak). Dominanceallows todistinguish, e.g., anger
fromanxiety/fear, which are both “negative” and “active” emotions, but differ
in the person’s ability to cope with the situation (Grimm et al., 2007).

These three dimensions form an abstract emotional space in which the ba-
sic emotions can be roughly placed due to their attributes (Fig. 1.6). Except
for neutral (which forms the center of this cube) and for disgust (which lies
somewhere in-between), the basic emotions are commonly viewed as being
extreme in any of the three dimensions and thus are sketched in the corners
of that cube.

Valence

A
r
o
u
s
a
l

D
om
in
an
ce

ANGER

ANXIETY

SADNESS

BOREDOM

NEUTRAL

HAPPINESS

DISGUST

Figure 1.6.: Six basic emotions (plus �neutral�) and their hypothesized positions in a three-

dimensional emotional space.

Fontaine et al. (2007) applied Principal Component Analysis to a set of 144
emotional features— appraisals, bodily experiences, facial and vocal expres-
sions, gestures, etc. — as evaluated by a large number of test subjects from
three different European countries and languages, and found unpredictabil-
ity as a potential fourth dimension.
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1.3. Emotions and Stress

Categorical? Dimensional?

The concepts of categorical and dimensional emotions are not mutually ex-
clusive; lots of research has been done which aims at placing a set of emo-
tional labels inside a two-, three-, or even four-dimensional space. Barrett
(1998) reports that the extent to which we consciously experience the differ-
ent dimensions of emotion might determine whether a categorical or a di-
mensional emotion model best captures how we label our affective states.

In this thesis, I will investigate the discriminative power of prosodic and par-
alinguistic parameters with regard to classification into discrete emotions
only, because this coincides with the nature of the investigated speech data,
which are sentences produced in different emotional categories.

1.3.2. Stress

Just as for emotions, the discussion on “stress” is a matter of controversy.
Many theories exist which agree in some parts, but disagree in others. Stress
is a subject of research in physiology, psychology and sociology – not tomen-
tion the origin of the term stress, which lies in the physical world, where it is
understood as a force causing a material deformity that results in strain. The
common denominator is, however, that stress is perceived as aversive and
accompanied by negative emotions.

Based on pioneering work by the physiologists Bernard (19th century) and
Cannon (1932), Selye (1950) defined stress as the nonspecific response of the
body to any demand which triggers a “general adaptation syndrome”. This
concept was later refined by Lazarus (1998), who defined the following four
elements which must be included in modern stress concepts:

1. A causal external or internal cause: the stressor,
2. An evaluation to distinguish “good” from “bad”,
3. Coping processes to deal with stressful demands, and
4. A complex pattern of effects: the stress reaction.

With regard to speech production, cognitive stress is of special interest. The
cognitive system is responsible for how we perceive things, howmuch atten-
tion we are able to pay on something, how we make decisions — and also
which words we use and how we say them. Stress can be manifold and thus
originate also from non-perceptual sources; we may, for example, be limited
inour cognitive abilities todaybecausewehaven’t got enough sleep last night,
which in turn degrades our performance on a given task. Let’s have a look on
different categories of “stress”.

13



1. Introduction

A Taxonomy of Stressors

On aNATOworkshop on speech under stress in 1995, a taxonomy of stressors
has beenworked outwhichwas published in (Hansen et al., 2000). It differen-
tiates between four degrees of “stress”, as listed inTab. 1.1, which aremutually
independent8. Stressors from all categories can affect the speech production
process on different levels, as we will see in section 3.1.1.

Order Category Examples

0 physical Vibration, Acceleration (G-force), Personal Equip-
ment, Pressure Breathing, Breathing Gas Mixture

1 physiological Medicines, Alcohol, Nicotine, Fatigue, Sleep De-
privation, Dehydration, Illness, Local Anesthetic

2 perceptual Noise, Poor CommunicationChannel, PoorGrasp
of Language

3 psychological Workload, Emotion, Task-related Anxiety, Back-
ground Anxiety

Table 1.1.: Taxonomy of stressors (from Hansen et al. (2000)).

In the course of this thesis, I have created a database of airline pilots’ speech
under stress (described in chapter 2). According to the test design, the test
subjects havemainly experienced third-order stressors during the recordings.
With regard to cognitive stress, however, all stressors from this list can affect
the ability to keep one’s head clear for a given task and it seems to be impos-
sible to unravel the complex interaction of potential stressors.

The good news is that the identification of stressors being responsible for a
stress reaction is not of the essence when we are only interested in the inten-
sity of the reaction.

Demand and Response Capability

A suitable interpretation of “stress” for our needs can be found in a review
article by Koolhaas et al. (2011):

We propose that the term “stress” should be restricted to conditions
where an environmental demand exceeds the natural regulatory
capacity of an organism, in particular situations that include un-
predictability and uncontrollability.

8We should be aware of the fact that the North Atlantic Treaty Organization is a military al-
liance which reflects in examples which are not commonplace, such as “pressure breath-
ing”. Nonetheless, I think that this taxonomy is generally valid.
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1.3. Emotions and Stress

This is identical to what Lazarus (2006) calls the response approach: a stress
reaction is not only dependent on the stressor, but also (and to a considerable
extent!) on the individual and the situation. Potential conditions include age,
experience, training, personality, time-of-dayandcurrentmood, toname just
a few.

So, we assume that different individuals will show different reactions when
faced with the same situation or task. From an experimental point of view,
this concept has two implications:

+ The charming aspect about it is the definition of “stress” as something
relational, whichmakes it suitable for experimentswith a limitednum-
ber of participants, since individual differences in coping with stress-
ful demands are already considered. If we took just the task complexity
itself as a measure for the estimated workload, a large number of test
persons would be necessary to assess trends of general behavior.

− In turn, the intensity of the stress reaction has to be measurable in
some way, which means additional efforts to be made.

This drawback, however, carries only little weight because there are estab-
lishedphysiologicalmeasureswhichhaveproven to indicate stress andwhich
can be obtained in a rather uncomplicated way (see section 2.3).
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1.4. State of the Art

1.4.1. Emotion Detection from Speech

The first empirical investigations on how emotions affect the human voice
date back to the pre-computer era (Scripture, 1921; Skinner, 1935; Fairbanks
and Pronovost, 1939; Fairbanks andHoaglin, 1941), where the available tech-
nologies allowed for qualitative analysis of visualized waveforms only. This
glass ceiling was broken throughwhen the first digital computers entered the
laboratories around theworld in the 1960s. Psychiatrists startedfirst attempts
in diagnosing affective states through voice analysis, and linguists weremore
and more not only interested in automated speech recognition, but also in
the electronic analysis of paralinguistic phenomena. It should take, however,
another decade, until Williams and Stevens (1972)made the next step by per-
forming quantitative analysis of speech parameters for a few sentences pro-
duced in four different emotions. They were able to produce some general
statements with respect to basic parameters of the fundamental frequency,
but had to conclude that “at present it is certainly not possible to specify any
quantitative automatic procedures that reliably indicate the emotional state
of a talker”.

That seemed to discourage potential imitators for a while, because — apart
from several qualitative results from different studies which have been excel-
lently summarized by (Cowie et al., 2001) — it was not until the mid-1990s9,
when Dellaert et al. (1996) renewed the venture towards automatic emotion
recognition from speech by exploring the potential of several statistical pat-
tern recognition techniques. A considerable number of related publications
over the following years documents the grown interest into the topic; in the
early years focusing on the choice of suitable parameters, which seemed to
be found in the statistics of fundamental frequency and intensity as well as
measures for speech rate (Banse and Scherer, 1996; Mozziconacci and Her-
mes, 1997; Amir andRon, 1998; Polzin andWaibel, 2000; France et al., 2000).

In the “applied research group”, several studies then focused on alterna-
tive classification techniques to improve emotion recognition performance.
Nicholson et al. (1999) was the first to test a neural network classifier for this
purpose. Later, HiddenMarkovModels (Schuller et al., 2003; Nwe et al., 2003;
Lee et al., 2004) or Dynamic Bayesian Networks (Barra-Chicote et al., 2009)

9Ten years earlier, Van Bezooijen (1984) had demonstrated in her Ph.D. thesis that emotional
speech can be classified quite well into 10 different categories by means of discriminant
analysis, what (for whatever reason) has barely been acknowledged by the scientific com-
munity.
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were used as classifiers to capture the temporal evolution of the acoustic vari-
ables over time. Other classification techniques have been investigated (Yang
et al., 2009), but without remarkable success. Another observable trend was
the increasing popularity of the bag-of-features method which calculates
any possible feature from the speech signal and employs complex statistical
methods to select the few meaningful descriptors from the vast number of
candidates (Schuller et al., 2007; Vlasenko et al., 2007b; Wang et al., 2008).
This method is quite successfully applied in image classification for object
recognition (e.g., human faces) from pictures, but has not proven to out-
perform emotional speech classification with manually selected features so
far.

The “basic research group”, on the other hand, continued their in-depth in-
vestigations under laboratory conditions. Paeschke and Sendlmeier (2000)
tested the just released Emo-DB database with prosodic parameters as pitch
range or declination. Kehrein (2002) created his prosody model based on
visual analysis of fundamental frequency, intensity, and syllable durations
from manually extracted speech chunks. Alter et al. (2003) investigated sev-
eral spectral features as potential correlates of “breathiness” and “roughness”
on isolated vowels, and employed sentences with emotional content. By
measuring event-related brain potentials, they were even able to track mis-
matches between emotional state and lexical content of a sentence, which
was also reflected in one of their features. Liscombe (2007) compared emo-
tions perceived by listeners to those intended by the speakers using rather
simple f0- and intensity-based speech parameters. Bulut and Narayanan
(2008) went the other way by systematically changing f0 characteristics of
emotional speech and presenting these modified sentences to participants
of a listening test in order to find out which modifications lead to changes in
perceived emotion.

Voice quality as a potential descriptor of emotional state was first considered
by Ishi andCampbell (2002, in termsof breathiness) and investigated indetail
by Lugger and Yang (2007) who were looking for speech parameters which
describe other emotional dimensions than arousal10. It was again (Yang and
Lugger, 2010) who tried to break new ground by translating pitch values into
musical tones in order to investigate the “harmony” of a sentence.

Some researchers bothered to record large-scale corpora of spontaneous
speech with emotional content in order to provide a solid data foundation
for substantiated analysis results. In turn, they had to focus on single emo-
tions or mental states to prevent losing scope (see section 2.1). (Ang et al.,
10In their experiments, Lugger and Yang found out that the popular speech parameters based

on fundamental frequency and energy mainly describe the arousal dimension (which is
“active vs. passive”) and thus other features had to be found.
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2002) analyzedmore than 20000 sentences fromhuman-computer dialogs by
people who made air travel arrangements over the telephone. Using mainly
duration- andpause-basedparameters, theywereable to classify “neutral” vs.
“annoyed/frustrated” equally well as human labelers. Karam et al. (2014) col-
lected over 220 hours of daily telephone conversations from people suffering
from bipolar disorder with their clinicians to come up with speech parame-
ters which facilitate recognition of manic and depressive mood states.

In addition, there have been several content-basedapproaches involving au-
tomated speech recognition (ASR) which have been excellently summarized
by (Batliner et al., 2011a); the idea is that emotions are also reflected in the
usage of certain words or grammatical alterations. Some attempts were also
made to recognize emotion-associated non-linguistic vocalizations without
ASR, such as the automatic detection of cries (Pal et al., 2006) or laughter
(Petridis and Pantic, 2008).

Finally, I would like to point the interested reader to the comprehensive re-
view of Juslin and Laukka (2003) who compiled a list of over 100 studies on
the expression of emotions in speech (and, interestingly, also inmusic) which
had been published until then.

1.4.2. Stress Detection from Speech

Early contributions to the problem of stress detection in speech came from
Stevens and Williams (1969) and Kuroda et al. (1976) who evaluated several
characteristics of the fundamental frequency contour11 ofmilitary pilot voice
recordings. Although comparing “neutral” speech to speech in extremely
stressful situations, large individual differences in the investigated parame-
ters allowed for qualitative statements only. Streeter et al. (1983) analyzed
recorded telephone conversationsbefore andduring theNewYorkCity black-
out of 1977 between the responsible system operator of the involved energy
company and his supervisor. Although therewere only two different voices to
be analyzed, they were not able to find one single reliable acoustic indicator
of stress.

An analysis-by-synthesis approachwas followed by Protopapas and Lieber-
man (1997) who created various versions of synthesized fundamental fre-
quency contours based on real speech under neutral and high-stress condi-
tions, respectively. A listening test revealed that maximum f0 seemed to be
the only reliable non-linguistic indicator for stress recognition.
11These characteristics also included short-term perturbations as jitter which is nowadays

associated with voice quality rather than f0.
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After the SUSAS database (Hansen and Bou-Ghazale, 1997) had been re-
leased, various studies on speech under stress in terms of classification per-
formance, suitable speech parameters and its impact on speech recognition
accuracy were published which make use of this database (Yao et al., 2005;
Schuller et al., 2006; Vlasenko et al., 2007a; Casale et al., 2008; Luig, 2009,
in addition to many publications from Hansen’s research group). A com-
prehensive overview on that database and the distributions of classic pa-
rameter values can be found in (Hansen and Patil, 2007). In the course of
these SUSAS-based studies, an energy-based parameter called Teager Energy
Operator (Hansen et al., 2003) gained growing popularity; however, this pa-
rameter was only rarely employed in other, non-SUSAS-based studies. An
investigation on how well human listeners are able to distinguish between
the single classes used in SUSASwas done by Bolia and Slyh (2003) who, how-
ever, just used different speaking styles rather than workload levels for their
evaluation.

Fernandez and Picard (2003) were the first to classify different levels of stress
rather than just “stress” vs. “non-stress” conditions. Drivers had to solve sim-
ple arithmetic tasks while driving at different speeds, their recorded answers
formed the dataset under investigation. With different TEO-based parame-
ters, they were able to produce results well above chance level, but still far
from perfect recognition.

Since the acquisition of “actual stress” speech data under laboratory con-
ditions seemed to be impossible, several researchers concentrated on the
effects of workload on speech. Griffin andWilliams (1987) report significant
increases in f0 and intensity as well as decreases in word duration as the ef-
fects of increasing cognitive task complexity. Lively et al. (1993) conducted a
cognitive workload experiment and found intensity mean and variability to
be significantly increased in speech produced during workload tasks. They
concluded that, during multi-tasking, the speakers adapted their speech to
maximize intelligibility. Baber et al. (1996) found that workload can signifi-
cantly affect speech recognitionperformance. Scherer et al. (2002) performed
a large-scale study with 100 participants speaking three different languages
in which the subjects performed a logical reasoning test under two different
conditions, the second condition assumed to induce psychological stress.
Just asmany of their predecessors, they had to report strong individual differ-
ences in their few basic acoustic parameters. The classic Stroop test (Stroop,
1935) was employed by Rothkrantz et al. (2004) to check the participant’s
voices for effects of workload, but the results — again — were very speaker-
specific. Jameson et al. (2006) analyzed the possible effects of time pressure
and cognitive load on mostly duration-based speech parameters, but found
no significant relationships.
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At the same time, researchers were engaged in finding methodologies for es-
timation of inducedworkload as a function of the given task (e.g., Averty et al.
(2002) for the special case of air traffic control), which is a necessary step to
move away from two-class scenarios which are rather abstract representa-
tions of the real world. In the meantime, also Hansen’s group had developed
another speech-under-stress database named UT-Scope which contains ad-
ditional heart ratemeasurements as physiologicalmarkers of the actual stress
level (Godin and Hansen, 2008) with the same objective.

Recent research is again aviation-related (Ruiz et al., 2010; Huttunen et al.,
2011), but without surprising results or new insights, unfortunately. An inter-
esting approach was presented by (Yao et al., 2015) who argue that a physi-
cal model of speech production could best describe the variations in airflow
characteristics due to stress. Theirmodel describes the airflowcharacteristics
of the vocal folds, the vocal tract, and the laryngeal ventricle. Using isolated
vowels from three different cognitive tasks, they achieve good classification
results, though under very strict laboratory conditions.

1.4.3. Acoustic Correlates of Emotions and Stress

As a starting point for my research, I have been browsing the literature for
acoustic, auditive and prosodic correlates of emotions and stress. The result
is shown in Tab. 1.2 which compiles the results of several meta-studies on
that topic (Scherer, 1986; Murray and Arnott, 1993; Cowie et al., 2001; Luig,
2009). This table contains qualitative statements on the overall behavior of
commonly investigatedparameterswith regard to the “big six” emotional cat-
egories as used today, ranging from “strongly increased” (++) to “strongly de-
creased” (−−) in six degrees. Parameters on which the literature does not
reach a consensus are marked with n.c., for “no consensus”.

A remarkable fact is that these “classic” acoustic parameters mainly seem
to reflect the arousal dimension, meaning that higher values of parame-
ters based on fundamental frequency and intensity indicate active emotions
as anger and happiness, whereas lower values of these parameters point
to sadness, for example12 13 What should also attract our attention is the
sparse number of clear statements regarding stress. One reason for this is
certainly that individual stress reactions are substantially different among
people which makes it hard to generalize findings of any kind.

12The arousal dimension is the y-axis in Fig. 1.6.
13Cummins et al. (2015), by the way, published a similar collection for low and high levels of

speaker depression; the results are similar to what is listed for sadness here.
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1. Introduction

Fundamental Frequency and Pitch Parameters

Many studies — by far not just the “early” ones — tend to describe acoustic
variables by their statistics (in terms of mean and standard deviation), which
is especially true for the fundamental frequency; presumably due to the fact
that statistic measures are a convenient way to capture the dynamic nature
of speech melody. However, many authors seem to disregard the fact that f0
values often have a non-normal distribution which, strictly speaking, makes
these descriptors not applicable for this kind of data. But also nonlinear de-
scriptors as themedianand inter-quartile rangesdonot lead to thedesired re-
sult, because they also donot account for the fact that there is a linguisticmo-
tivation in, e.g., overemphasizing certain syllables to strengthen themeaning
ofwhat is said. Also for the purpose of speaker recognition, where pitch range
is generally regarded as an important feature, these rather simple measures
are not very successful (Ladd et al., 1985). Some studies employed logarith-
mized f0 values to roughly approximate human pitch perception; sometimes
temporal derivatives (∆f0 and ∆∆f0) were used.

Even within linguists and phoneticians, there is no general agreement on the
term “pitch range” and how this should be measured. Patterson and Ladd
(1999) have come up with a proposal for linguistically motivated level and
rangemeasures which are based on initial peaks and final lows of a sentence,
as well as the other accent peaks and valleys. In a large-scale study, they were
able to show that their measures outperform the distribution-based features
with regard to correlation with listener’s ratings for different emotions.

Initially planned as an original contribution of this thesis, but in the mean-
time also proposed by Yang and Lugger (2010), is the idea to describe themu-
sical harmony of an utterance. Although the human voice is monophonic
by nature and thus will not produce several tones at once, a harmonic im-
pression can still be created by successive tones within short periods of time.
Think of someone coming home and saying “hallo-oh!” to tell everyone he’s
back: this might sound like a major triad, for example.

Some studies also include formant frequencies and bandwidths as poten-
tial indicators for emotion. Since formants are distinctive frequency peaks
which determine the quality of a vowel (see section 3.1), they rapidly change
with each syllable and thus are no suprasegmental characteristics at all. They
might be applicable when analyzing isolated speech sounds, but not for flu-
ent speech.
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Intensity Parameters

Finding parameters for intensity seems to be a rewarding task, because its
course over time is mainly determined by what is said, so the average inten-
sity as well as intensity range and dynamics are the common parameters. In-
tensity is calculated as the average or the sum of absolute values of the PCM
signal over short-term windows; later studies mostly calculate the signal en-
ergy instead of intensity, which is simply the squared intensity.

As for fundamental frequency, energy values are sometimes logarithmized to
approximate human loudness perception. I have not found a psychoacousti-
cally valid loudness calculation (→ 3.2.3) in any publication on emotional or
stressed speech.

Duration-Based Parameters

When phoneme or syllable boundaries are known, duration parameters are
easy to obtain. In such cases, average and maximum durations of these seg-
ments are commonly used measures. In all other cases, mainly two kinds of
duration-related parameters are calculated:

I Speaking rate is commonly understood as the number of syllables per
time unit; it can be approximated by counting the number of coherent
voiced or unvoiced periods and normalizing the result by the length of
the utterance.

I Pause-related parameters include the speech-to-pause-time ratio or the
numberof “long”pauseswhichexceedapredefined thresholdduration.
The separation of speech and pause segments requires a rather simple
method for voice activity detection.

Voice Quality Parameters

In Tab. 1.2 on page 21, voice quality is described through keywords, but no
acoustic correlates are given. This is due to the fact that these results have
been produced by studies which judged speech parameters qualitatively.

Popular quantitativemeasures for voice quality are jitter and shimmer, which
refer to microprosodic irregularities in the glottal excitation signal with re-
spect to timing and amplitude, respectively. This glottal excitation signal can
be calculated by applying an “inverse vocal tract filter” on the speech signal;
earlier studies sometimes approximated jitter and shimmer by counting the
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changes in sign on temporal derivatives of f0 and energy curves. Another pa-
rameter which can regularly be found is the harmonics-to-noise ratio of the
speech signal (→ 4.4.3).

Recent studies which incorporate voice quality parameters mostly use the
calculation of Stevens and Hanson (1995) which is explained in section
4.4.4.

Findings from Bag-Of-Features

Batliner et al. (2011b) report on a large-scale bag of features study incorporat-
ingmore than 4000 different speech parameters whichwere evaluated by pa-
rameter selection algorithms to ultimately lead to a set of “most descriptive”
parameters. Researchers from seven institutes in four countries participated
in this study, whichmakes it— tomy knowledge— the largest attempt in this
direction so far. The aimwas to find a set of 150 parameters and to investigate
which acoustic variables participate to what extent in the final parameter set.
Their results for a 4-class problem are given in Tab. 1.3:

DUR ENG PIT SPEC CEPS VQ WAV All

Share [%] 18.7 22.0 15.3 11.3 15.3 7.3 10.0 100.0
F measure 54.9 56.9 46.7 49.9 50.4 41.5 44.9 63.4

Table 1.3.: Bag-of-features results for emotion recognition (from Batliner et al. (2011b)).

Share indicates the percentage of features from each category in the �nal fea-

ture set, F measure is the classi�cation accuracy when using only the respective

subset for classi�cation. Parameter categories: DUR = duration, ENG = en-

ergy, PIT = pitch, SPEC = spectral, CEPS = cepstral, VQ = voice quality,

WAV = wavelets, ALL = all features (complete set).

The F measure used by Batliner and his colleagues is the harmonic mean of
precision (= percentage of correct classifications for class X) and recall (= cov-
ered percentage of true occurrences for class X) and is a validmeasure for the
classification accuracy obtained with the respective set of parameters. Keep-
ing inmind that chance level for this 4-class problem is at 25%, the results are
not convincing at all.
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1.5. What to Analyze?

The ultimate database of emotional speech should contain spontaneously
uttered sentences spoken in natural emotional states while covering the
whole spectrum of possible emotions at the same time. Preferable, all speech
data come with annotated phoneme and syllable boundaries as well as
phoneme transcriptions to facilitate detailed analysis of the elementary parts
of speech.

Unfortunately, no such database exists to date. There are several databases
withmore or less “spontaneous” speech, mostly consisting of recorded utter-
ances fromTV talkshows, radio programs, or call-center telephone conversa-
tions. These have the disadvantage that no transcription is available, and the
quality as well as the intensity of the speakers’ emotions have to be judged
by oneself. Acted emotions, on the other hand, offer the advantage that all
emotional states can be produced in equal parts andwith unique class labels.
Although it is commonly assumed that acted emotions tended to be exagger-
ated compared to natural emotions, there is evidence that acoustic correlates
of natural and acted emotions are at least not contradictory, but point in the
same direction (Williams and Stevens, 1972).

From a variety of publicly available databases of emotional speech (see, e.g.,
Anagnostopoulos et al. (2015)), I have chosen the Berlin Database of Emo-
tional Speech (Burkhardt et al., 2005). The selection criteria were the follow-
ing:

I The database should consist of English or German speech, which are
the two languages I amfluent in; which is, inmy opinion, a prerequisite
for being able to judge the quality of the data.

I The database should comprise several emotional classes, ideally the
“big six” formulated by Ekman and Friesen (1971). Acted emotions are
acceptable for lack of alternatives.

I Preferably, the emotional classes should have been verified by human
listeners to ensure that the perceived emotions match the intended
emotions.

I There shouldbe transcriptionsof syllableboundaries to facilitatepromi-
nence estimation and the calculation of rhythmic parameters.

The last point is especially important, as no robust and reliable syllable seg-
mentation algorithm exists to date which would allow to estimate syllable
times and durations from spontaneous speech. I will develop such an algo-
rithmduring this thesis, but Iwill need reference data to assess its accuracy.
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The number of available databases of speech under cognitive stress is more
than limited. Although Ververidis and Kotropoulos (2006) list a total of 10
“emotional data collections” with cognitive stress subsets in their review,
and although considerable research on the topic has been reported in var-
ious more recent studies (Hansen et al., 2005; Sigmund, 2006; Ikeno et al.,
2007; Boril et al., 2011; Truong et al., 2015; Sabo et al., 2016), the 1997 SUSAS
database (Hansen and Bou-Ghazale, 1997) remains the only publicly avail-
able speech corpus to date. All other experiments reported in the literature
use self-recorded, “custom” speech data. The experimental design is not
clearly stated in most cases which makes it impossible to reproduce or to
compare the results. Fundamental questions are left open: which part of
the data was used for training, which for testing? Which evaluation strat-
egy was chosen? Which assumptions were made when defining the no-stress
condition?

Although still the major source for researchers who do not record their own
speech datasets14, SUSAS suffers from a few, but significant limitations. First
of all, it is restricted to single-wordutterances fromcommonaircraft commu-
nication vocabulary, which contradicts the idea of analyzing suprasegmen-
tal speech parameters which require a larger context. Second, two levels of
cognitive stress are provoked by computer workload tasks of different com-
plexity; so, although the demand level is set, the actual stress level (which
depends on the subject’s response capability,→ 1.3.2) is not assessed. There
are additional recordings fromamusement park rollercoasters andhelicopter
cockpits which comprise the “actual stress” domain; they consist of the same
vocabulary, but have been produced by different speakers and can thus not
be compared to any “neutral” reference from that database.

As a consequence, an essential component of this thesis is the conceptual-
ization and realization of a(nother) database with speech under stress. This
is presented in chapter 2.

14(Anagnostopoulos et al., 2015) argue that the small-scale collections of speechmaterial cre-
ated for a specific study which is not publicly available should be called a dataset instead
of a database. I adopt their opinion.
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1.6. Aim and Contributions of this Work

The aim of this thesis can be broken down into the following three tasks:

TASK 1: Calculate prosodic variables from the speech signal:
a) speech signal→ acoustic variables
b) acoustic variables→ auditive variables
c) auditive variables→ prosodic variables

TASK 2: Find descriptive parameters for the prosodic variables.
TASK 3: Identify which parameters reflect emotions or stress.

I will present 27 linguistically and musically motivated speech parameters
as potential descriptors of emotional state or stress level and describe their
calculation as well as my motivation for selecting them. Some of these pa-
rameters are already common in this field of research, some are refined ver-
sions of familiar parameters, and a few parameters are based on completely
novel ideas. The latter is especially true for thepresenteddescriptorsof speech
rhythm, which is a complex matter by itself.

In accordance with the scientific parable of standing on the shoulders of gi-
ants, I have made use of a large number of ideas, concepts and algorithms of
others during the accomplishment of the first and the third task listed above.
This includes several establishedmethods fromthefieldsof statistics andma-
chine learning, including statisticalmodeling aswell as regression and classi-
fication methods. These methods will be briefly introduced in the respective
chapters, but not be discussed in detail, as most of you will probably be al-
ready familiar with them anyway.

Due to the lack of some required resources or adequate methods, however, I
had to develop a few things on my own:

I First of all, a suitable databasewith speech under cognitive stress had to
be created. The creation of the IEMPilot SpeechDatabase is described
in chapter 2; it included the recruitment of professional airline pilots
and the design of a demanding 3.5 hours flight plan aswell as the imple-
mentation of a multi-channel recording solution with automatic voice
activity detection. The recorded data had to be post-processed, catego-
rized, and synchronized with heart rate measurements which allow to
assess the mental state of the speakers. For this purpose, several estab-
lished parameters of heart rate variability were calculated (→ 2.3.2).
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I As the several available algorithms for blind syllable detection turned
out not to work satisfactorily, I had to develop an own solution (→
3.4.1) which also includes the estimation of perceived syllable dura-
tions. This was necessary due to the fact that syllable durations are
in many cases over-estimated when separating successive syllables by
single markers only (→ 3.2.4).

I Thecalculationofmelodicparameters requires a continuousandsome-
what smooth pitch contour free from rapid fluctuations in frequency
or unvoiced interrupts to match our impression of “speech melody”. I
have designed amethod for the creationof a continuouspitch contour
from a fragmented fundamental frequency track which includes inter-
polation, stylization, and smoothing (→ 3.3.2).

I For the calculation of syllable prominence, we need its loudness, its per-
ceived length, and its pitch. Due to the dynamic nature of pitch, how-
ever, it is a non-trivial task to assign a single pitch value to a syllable in
an appropriate way. During my work on this thesis, I came up with a
novel method for the estimation of perceived syllable pitch depending
on the course of the pitch contour during the syllable (→ 3.5.2).

I In this thesis, rhythm is interpreted in amusical sense. Fromthepercep-
tual centers of the syllables and their corresponding prominence val-
ues, a rhythmic grid is created which forms the basis of several speech
rhythm-related parameters (→ 4.3.1).
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Under Stress

Unfortunately, no appropriate database of speech under stress is available which

could be used for my investigations, so I had to create one. This chapter describes

the motivation, the concept and the recording of the IEM Pilot Speech Database.

2.1. Fundamental Considerations

2.1.1. Theory ...

A high-quality database of speech under stress has to meet three main re-
quirements: scope, naturalness, and context (Douglas-Cowie et al., 2003).

Scope refers to the number of speakers as well as to the number of different
stress types, the number of tokens per stress type, and the gender of speak-
ers. Many available speechdatabases aspire to the ideal of covering thewhole
domain of emotions and stress, rather than focusing on a specific sub-region.
This leads to a natural complexity which is out of proportion to the number
of speakers featured. Naturalness means that the recorded speech should
be neither prompted nor acted, but that the speakers are free to choose their
words and that they don’t have to pretend being in a specific mood or situa-
tion. Although acted speech can be reliably classified by listeners, there are
still systematicdifferencesbetweenactedandnatural speech. Acted speech is
often read instead of being spoken freely, which introduces distinctive “read-
ing characteristics” (Johns-Lewis, 1986). In addition, inter-personal effects
are not represented in acted speech, as it is often produced in non-interactive
monologues (Douglas-Cowie et al., 2003).

Finally, context has several aspects. The semantic context of stress can be
given by signal words indicating excessive demand; signs of stress can also be
encoded in the structural context, in the senseof followingor violatingdefault
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2. Creating a Database of Speech Under Stress

patterns of intonation or accentuation. Furthermore, if not communicating
remotely, we can see our communication partner and provide several kinds
of stress-related information through our facial expression, gesture and pos-
ture (intermodal context). Although these three contextual aspects are not
assessed in the later speech analysis if concentrating on prosody and paralin-
guistics only, they still contribute to naturalness. A fourth aspect of context is
the time course of episodes (temporal context), since stress does not appear
and vanish suddenly, but evolves over time. From a linguistic point of view, I
would also highlight that — if a database is split into single chunks of speech
— sample length is also a crucial parameter for the applicability of prosodic
parameters, since the way we say something can hardly be accessed by anal-
ysis of single words.

2.1.2. ... and Practice

Having these theoretical aspects inmind and considering potential recording
environments where people are used to talking under stressful conditions,
the idea was born that airline pilots might be the ideal test subjects, for the
following reasons:

I The job profile of an airline pilot is both comprehensive and challeng-
ing. Besides high demands on communication, comprehension and
technical skills, it is accompanied by heavy responsibility. The recent
“Most Stressful Jobs” list of the online job search portal CareerCast (Ca-
reerCast, 2017) lists airplane pilots on third position, after military per-
sonnel and firefighters1.

I Communication is essential in aviation. The pilots gather information
onweather conditions andon the route, theybrief the cabin crewbefore
the flight, they regularly communicate with air traffic controllers on the
ground, and they process checklists throughout the flight to ensure that
all systems are working properly. So, there will be a lot of talking in a
regular flight scenario without the need for prompting speech at all.

I Mostof the communication is done remotely. Pilotswear aheadset con-
sisting of headphones and microphone to keep their hands free for the
various controls, so it is always possible to record their speech without
adding an intrusive element which is not part of the daily job.

The cockpit of an airplane is a “realistic” environment, and at the same
time, we are very close to laboratory conditions concerning the quality of
the recorded speech.

1The amount of stress which is experienced in a certain job is calculated by rating emotional
factors, physical demands, and hazards typically experienced in that occupation.
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2.2. Database Creation

2.2.1. The Concept

The main hypothesis is that the presence of cognitive stress leaves traces in
speech parameters, so we must design an experiment in which the partici-
pants are exposed to actual stress while speaking. As already discussed, the
complexity of a task to be solved sets a specific demand level, but we can
not draw concrete conclusions on the level of stress experienced by the par-
ticipants. As a consequence, we need additional parameters which reliably
reflect the stress response. Parameters of heart rate variability (HRV) have
proven to be reliable indicators of cognitive stress during computer work
tasks (Hjortskov et al., 2004) as well as arithmetical tasks (Vuksanović and
Gal, 2007; Lackner et al., 2011; Traina et al., 2011; Visnovcova et al., 2014)
and of mental stress during academic exams (Tharion et al., 2009; Papousek
et al., 2010; Melillo et al., 2011). In addition, they have the advantage that
they can be measured with small, portable devices, such that the degree of
intrusiveness is minimal.

So, the experimental setup is aimed at exposing the pilots to a defined de-
mandat a certainpoint in time,while recordingboth their heart rate and their
speech simultaneously. The experiments take place in a levelD full flight sim-
ulator, which is basically a real airplane cockpitmountedon amotionbase, to
simulate real flight characteristics. Regular airline pilots participate as volun-
teers in the experiments. A typical working day of a pilot is captured in a flight
programof 3.5 hours in lengthwhich has beendesigned by professional flight
instructors who graded the expected quality and level of stress by experience.
A civil airplane is typically operated by two pilots; the commander has the
overall responsibility for the safe operation of the airplane, while the first offi-
cer provides support in all tasks during the flight. Thepilots usually take turns
in flying to avoid fatigue; while the pilot flying operates the controls, the pi-
lot non-flying takes care ofmost external communication tasks and checklist
processing. The pilots experience a variety of unexpected events and techni-
cal malfunctions during the flights which require short-term decision mak-
ing. They are free in the way they react to these situations to keep the degree
of reality as high as possible.

Both speech recordings and heart rate data are afterwards synchronized, and
the speech data are segmented into single utterances based on voice activity
detection andmanual post-processing. The totality of single speech files and
corresponding heart rate data forms a database of pilots’ speech under stress
which is made publicly available as the IEM Pilot Speech Database (IEM-
PSD) through EUROCONTROL, as mentioned on page v.
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2.2.2. Test Setup and Design

Recording Environment

The experiments take place in a Fokker F70/100 series full flight simulator at
Aviation Academy Austria2. The simulator is graded “Level D” which is the
highest degree of realism available on ground; it is regularly used by the lead-
ing Austrian airline for biannual proficiency checks. All instruments and con-
trols in the cockpit are original, and the pilots look through a glass window
on a collimated display3. The simulator is equipped with a 3D sound sys-
tem including infrasonic sound, and the motion base system simulates real
flight characteristics. The audio channels (headsets and push-to-talk devices
in the cockpit, flight instructor’s voice) aredigitally accessible in a server room
outside the simulator, and can thus be captured in a completely “invisible”
way.

(a) Exterior view. (b) The author starting from Vienna Airport.

Figure 2.1.: The full �ight simulator at Aviation Academy Austria.

The flight simulation is executed and controlled by a supervisor sitting in a
visually separated area in thebackof the cockpitwhoalso acts as the air traffic
controller communicating with the pilots via radio.

Test Subjects

Eight professionalmale Fokker F70/100 pilots participate as volunteers in the
experiments. All pilots are full-timeemployeesof a regional subsidiaryofAus-
tria’s leading airline and familiarwith the simulator, which is used for type rat-
ing tests and biannual proficiency checks. The native language is (Austrian)
2Aviation Academy Austria, Neusiedl/See, Austria, www.aviationacademy.at
3A collimated display makes sure that both pilots see the world outside the window without
angular errors or distortions.
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German in seven cases; 1 native Danish pilot is fluent in German. The pilots
have been instructed to speak English during formal communication, while
being allowed to switch to German during informal talk.

The pilots are grouped into 4 teams of one experienced pilot acting as the
commander (CMDR) and one less experienced pilot as the first officer (F/O).
The flight programhas a total duration of approximately 3.5 hours and is exe-
cuted once for each teamover a period of 2 consecutive days. Personal statis-
tics of the selected volunteers are given in Tab. 2.1; the Pilot ID specifies ses-
sion number and crew role.

Pilot ID Age
Prof. Experience

Pilot F100 as CMDR

CMDR 1 31 11 11 6

F/O 1 35 3 3 —

CMDR 2 45 20 20 12

F/O 2 34 12 5 —

CMDR 3 48 22 5 5

F/O 3 29 10 5 —

CMDR 4 44 16 2.5 2.5

F/O 4 29 11 4 —

Table 2.1.: Personal statistics of pilots participating in the recording sessions (age and

experience given in years, resp.)

Responsibilities in the Cockpit

The tasks and responsibilities for the pilots are manifold:

I Before the flight, they carry out several pre-flight checks to make sure
that the navigation and operating systems work properly.

I They gather all information on the route and the weather, as well as on
the distribution of passengers within the cabin and the total weight of
the airplane.

I Based on this information, they create a flight plan including the route
to be taken, altitudes during the flight, and the required amount of fuel.

I Before takeoff, they make sure all safety systems are working properly.
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I Also during the flight, regular checks on the technical performance of
the systems are carried out.

I The pilots regularly communicate with air traffic controllers on the
ground regarding weather conditions and air traffic.

I In case of an emergency, the captain needs to decide quickly and appro-
priately which measures to take.

The Flight Program

The recording session consists of four different challenging scenarios (F1-F4)
plus one “referenceflight” (F0) at the verybeginning. The latter is included for
two reasons: first, from a psychological point of view, the pilots have a warm-
up flight and can acclimatize to the simulator again. Second, they provide
reference values for the three main flight phases of interest; (a) takeoff and
initial climb, (b) en route flight, and (c) approach and landing. The whole F0
scenario takes about 20 minutes, and the test subjects know in advance that
nothing exceptional will be happening during this warm-up flight.

A strain trajectory, gradedby experience, has been sketchedby the instructors
for eachof the four demanding scenarios (Fig. 2.2). It visualizes thepresumed
strain on the pilots as intended by the lesson plan; that is, the timetable of
occurring events and malfunctions. The term “strain” is used in this context
rather than task load, since the total demand is not only determined by task
complexity, but also by mental stress and task-related anxiety.

These four scenarios are implemented as a Line-Oriented Flight Training
(LOFT), which is a “full mission” simulation of scheduled flights. This in-
cludes a full cockpit preparation during the first scenario (“first flight of the
day”), as well as intensive air traffic control and cabin crew communication
during the flight. A 5-minute rest period after the reference flight shall ensure
that the test subjectswill have had a sufficient amount of time to fully recover.
The following four flights are then simulated in one stretch,

(a) from a temporal point of view; i.e., there are no pauses in between (ex-
cept for a short break to fill out the mood questionnaires); and

(b) from a local point of view; meaning that a scenario starts at the same
airport at which the previous one has ended.

The pilot flying role is assigned to the CMDRs during F1 and F2 (the more
demanding flights), and to the first officers during F3 and F4. In addition, we
provoke verbal communication in an extreme situation during takeoff abor-
tion in F3, as the commander has to tell the first officer verbally to immedi-
ately abort takeoff.
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Figure 2.2.: Strain trajectories and events/malfunctions for each of the four demanding

scenarios, F1-F4. Marked �ight phases are: [A] cockpit preparation, [B]

takeo� and initial climb, [C] en route �ight, [D] approach and landing.
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Audio Recording Setup and Quality

The pilots are asked to communicate via headset only and not to press the
“push-to-talk” button when using the radio transceiver or the line to the
cabin. All speech signals are pre-amplified and dynamically compressed
before beingmultiplexed into ADAT format4. Usage of a state-of-the-art pro-
fessional audio interface (RME Multiface) allows simultaneous capturing of
all audio channels while still providing the non-modified ADAT signal at the
output (“feed-through”). Thismeans that the audible signal which is fed back
into the cockpit is not altered in any way. Single channels are recorded in the
standard, uncompressedWAV format with a sampling rate of 44.1kHz and a
resolution of 16bit.

A patchwritten in the graphical programming languagePureData (pd) is used
to record all relevant channels to hard disk and to create speech activity infor-
mation data at the same time5. The raw speech data furthermore have to be
split into single files at a maximum of 100 minutes in length, since the WAV
file format does not allow file sizes greater than 2GB. For further details, the
interested reader is referred to the IEM-PSD technical report (Luig, 2011).

Although the speech recording quality conforms to compact disk (CD) stan-
dards, the “perceived quality” of the speech recordingsmay be lowered by the
fact that the pilots speak through standard headset microphones which they
are allowed to adjust at will. Common artifacts thus include sound level vari-
ability and distortion of consonants, especially plosives or fricatives. There
is audible crosstalk (speaker B recorded through speaker A’s microphone),
but at a sufficiently lower level compared to the primary source (speaker A).
This is considered to be tolerable, since the main objective for creating this
database is the maximum degree of reality rather than making high-fidelity
speech recordings.

Communication and Speech Data

All external dialog partners are simulated by the instructor sitting in the back
of the simulator, invisible to the pilots. Also speaking through a headset
microphone, his voice reaches the pilots’ ears through a band-limited com-
munication channel. The instructor was asked to keep an unagitated tone
when acting as an air traffic controller, as a technician ormember of the cabin
crew.
4The ADAT signal is a multichannel optical signal transmitted via glass fibre.
5Thisperfectly synchronized speechactivity log considerably facilitates subsequentdata seg-
mentation into single utterances.
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Mypersonal impression is that, dependingon theactual context, the recorded
speech data show considerable variations in terms of melody, rhythm, ex-
pressiveness and utterance length: Air traffic control (ATC) communication
shows reduced prosodic intensity, as its focus is on clarity and transmission
of information; whereas a discussion on what further action is required may
be held in a more “emotional” way. To facilitate any kind of further analysis,
each single speech file is thus labeled with one of the following categories:

ATC Communication radio communication with ground con-
trol, radar etc.

Cabin Address captain’s address to passengers

Checking Procedures one- or two-word communication
(“eighty knots”, “my controls”)

Cockpit Communication instructions, questions, discussions etc.

Free Speech all conversation not related to control-
ling the aircraft or handling a situation
(jokes, everyday talk)

Table 2.2.: Speech �le categories for IEM-PSD speech data.

Time Grids

To allow for the highest possible degree of realism, the pilots are completely
free in their course of action. As a consequence, the unexpected events and
malfunctions occur at different points in time (relative to the session start
time). The Traffic Alert and Collision Avoidance System (TCAS), for exam-
ple, should give the alarm eightminutes after takeoff, during the initial climb
phase. Such events are triggered by the flight instructor from the back of the
cockpit.

Since these times at which the events occur are of great importance for
event-based speech analysis, a detailed event log is created manually, and
the database documentation contains a list with all times of relevant events
as marked in Fig. 2.2.
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2.3. Measures of Heart Rate Variability

2.3.1. Heart Rate and the Autonomic Nervous System

Our autonomic nervous system (ANS) regulates essential bodily functions as
heart rate, respiration or digestion, to name just a few. Heart rate is thus a
valid quantitative marker of autonomic activity, and it is popular in stress re-
search due to because it can be measured in a non-invasive way.

Figure 2.3 on page 39 displays the heart rate of all four commanders over time
during flight 2, which is considered the most demanding flight in this LOFT
scenario. The instantaneous heart rate, sampled at fs = 4Hz, is represented
by the fine gray line; a smoothed version (50-samplesmoving average filter) is
displayed as a dark solid line for clarity. Four remarkable events are indicated
be vertical lines, which are takeoff (T/O), engine seizure (ENG), generator fail-
ure (GEN ), and landing with gear collapse (LAND). The time scale has been
normalized, since the length of the flights varies as the crew is relatively free
in their actions.

The immediate reactions to the single events are clearly visible in the heart
rate, as well as “anticipatory increases” before takeoff and landing. However,
once thenecessarymeasures for copingwith the changed situationhavebeen
taken, a significant decrease in heart rate indicates that the subjects have
settled down again. Over the whole flight of approximately 50 minutes, the
heart rate recordings show a consistent positive trend for all four comman-
ders which range between [14..32] bpm/hour.

But recordings of heart beats are just the basic signal for physiological analy-
ses, comparable with the acoustic pressure fluctuations recorded by amicro-
phone. Toquantifywhatweperceive asqualities of a sound,weextract a small
chunk of audio and perform Fourier analysis to estimate which frequencies
are present in the signal, or we average over all valueswithin the analysis win-
dow to estimate the intensity of the sound. In a similarmanner, there are sev-
eral well-established measures in cardiovascular physiology to describe the
function of the autonomic nervous system. The ANS consists of two comple-
mentary divisions, the sympathetic and theparasympathetic nervous system.
While the sympatheticnervous systemprimarily controls thebodily reactions
to all kinds of stressors (“fight-or-flight response”), the parasympathetic ner-
vous systemstimulates so-called "rest-and-digest" activitieswhen thebody is
at rest. Bothdivisions are always active, but at different levels (McCorry, 2007)
which can, for example, be assessed using frequency-domain methods.
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2.3.2. Heart Rate Variability

All these heart rate parameters are based on measurements of the interval
between consecutive heart beats and are generally referred to as heart rate
variability (HRV), although not all of them are measures of variance.

The characteristic shape of a electrocardiogram (ECG) is determined by dif-
ferent overlaid waves which are denoted by the letters P, Q, R, S, and T. The
remarkable peak in the waveform is caused by the R wave. Since it is easy to
detect, the interval between successiveR peaks (“RR interval”) is the common
measure for a heart period.

Figure 2.4.: RR interval detection (from (Kaufmann et al., 2011)): the R peaks are promi-

nent enough to be robustly detected with a global threshold.

Changes in heart rate variability are generally an indicator thatmore energy is
needed to prepare an appropriate response to a stimulus. To arrive at some-
thing that could be called physiologic state, it is common to analyze HRV pa-
rameters over an observation period of 5 minutes (Malik et al., 1996). HRV
parameters thus do not serve as indicators of stress reactions, but rather de-
scribe a steady state of autonomic balance.

In the following, I will briefly present the HRV parameters which are calcu-
lated from the pilots’ heart rate measurements as a reference for the actual
stress level.

I As a basic parameter, the average heart rate in beats per minute is cal-
culated.

I The simplest, but yet popular parameter is the standard deviation of
RR intervals over time windows of 5 minutes. Castaldo et al. (2015) re-
viewed existing studies examining correlations between HRV parame-
ters andmental stress and found that in the vastmajority of studies, the
SDRR parameter6 was decreased under stress.

6The RR interval is synonymously called as the NN interval (for “normal-to-normal” heart
beats), such that this parameter is also known as SDNN.
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2.3. Measures of Heart Rate Variability

I The phenomenon that heart rate increases during inspiration and de-
creases during expiration is called respiratory sinus arrhythmia (RSA);
our heart rate is modulated in frequency by respiration. This facilitates
the recording of the respiratory rate from the HRV signal, as well as
the calculation of other physiologically meaningful parameters such as
the degree ofmodulation, and the pulse/respiration ratiowhich is the
quotient of heart rate and respiration rate.

I The balance between sympathetic and parasympathetic nervous sys-
tem is measured by analyzing the power spectral density in two charac-
teristic frequency bands (LF: [0.04..0.15]Hz, HF: [0.15..0.4]Hz) and cal-
culating the LF/HF ratio as ameasure of vegetative activation level Ma-
lik et al. (1996).

I Following an approach by Bettermann et al. (1999), the algebraic sign of
the HRV derivative (that is, si g n (dHRV/dt )) is encoded binary, leading
to a pattern of zeros and ones which can be interpreted as a rhythmic
pattern. A distinctive predominance of certain pattern classes corre-
sponds to a small number of different rhythmical HRV patterns and
thus serves as an indicator of cardiac regularity.

2.3.3. Measurement Device and Data Analysis

The participants’ beat-to-beat heart rate signal is recorded with a high-
precisionmobilemeasurement device, the ChronoCord (8kHz sampling rate,
16bit resolution). All data are stored on a flash card and analyzed offline. The
ChronoCord offers the opportunity to setmarker flags at the push of a button,
so that heart rate and speech data can easily be synchronized afterwards by
setting an “acoustical marker” while pushing the button at the same time.
Such a marker was set by the pilots on request at the beginning and at the
end of each of the four flights.

Figure 2.5.: The ChronoCord device (left), electrode placement on a male body (right).
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2. Creating a Database of Speech Under Stress

The raw heart rate data are further processed and analyzedmanually by pro-
fessional physiologists7, including outlier detection and correction. Finally,
the data are resampled on a regular time grid with fs = 4Hz.

7HUMAN RESEARCH Institute, Weiz, Austria, www.humanresearch.at.
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3. Quantifying Prosodic Variables

This chapter deals with the task to derive prosodic variables from the acoustic

signal. For this purpose, its fundamental frequency and intensity are extracted.

These acoustic variables serve as a basis for the calculation of auditive variables

using models of human sound perception. Finally, we apply linguistic knowledge

to derive prosodic variables.

Applying these techniques and models requires profound knowledge of the funda-

mental processes of speech production and perception as well as essential signal

processing methods. Both are given at the outset of this chapter.

3.1. Speech Production

The process of speech production usesmoremotor fibers than any other hu-
manmechanical activity does (Kent, 2000). The resulting speech signal is thus
a very complex sound mixture which carries a lot of information. To under-
stand what we might be able to find in the signal, we should have a look at
how speech sounds are produced and how emotions or stress could affect
the speech production process.

3.1.1. The Human Speech Production System

The human speech production system, as sketched in Fig. 3.1, consists of two
major parts which have complementary functions. The organs of phonation
include the lungs and the larynx. On the larynx, we have two folds of skin, the
vocal cords, which blow apart and come together as we force air through the
glottis between them. This oscillation, driven by the sub-glottal air pressure
produced by the lungs, is the basic sound signal. The air pressure and the
oscillation rate determine the intensity and the fundamental frequency of the
speech sound. The organs of articulation include the cavities of both oral
andnasal tract aswell as the lips, the tongue, the jaw and the velum. They add
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3. Quantifying Prosodic Variables

Figure 3.1.: Sketch of the human speech production system (from Honda (2008))

resonances or modulations to the basic sound signal and produce additional
sounds for some consonants (cp. Honda (2008)).

From an acoustic point of view, the oral tract is an irregular tube between
larynx and lips, whose volume and cross-sectional area can be varied by the
muscles controlling lips, tongue, jaw and velum. The velum works like a
movable flapwhich controls the acoustic coupling between the oral tract and
the nasal tract, which on the other hand is an acoustic tube of fixed volume
and length. These tubular shapes produce characteristic resonances which
we call formants. Formants determine the identity of different vowels and
diphthongs; in other words, the difference between an “aaah” and an “oooh”
sound with the same pitch is due to the different formant structures.

The phonation process as described so far is valid for voiced sounds (such as
[a] or [m]) only. When the glottis is opened, but the vocal cords do not vibrate,
we are producingunvoiced sounds. Unvoiced sounds can be either aspirated
or fricative:

I Aspirated sounds (such as the [h] in “house”) are caused by airflow tur-
bulences at the partly opened glottis. These turbulences produce a ran-
dom noise sound which is modulated by the articulatory system.
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3.1. Speech Production

I Fricative sounds (such as the [s] in “sea” or the [S] in “dish”) are caused
by turbulences in the vocal tract due to a constriction of the tube close
to the mouth.

Finally, we are able to produce plosive sounds (such as the [p] in “pin”) by
closing the vocal tract completely for a small amount of time, allowing air
pressure to build up before suddenly releasing it by opening the mouth.

The Source-Filter Model

A common, simplified model of speech production is the source-filter model
which assumes the glottal excitation source to be linearly separable from
the transmission characteristics of the vocal tract. Depending on the kind of
sound produced (voiced or unvoiced), the excitation signal is modeled either
by a sequence of equidistant pulses, a random-noise generator, or a mixture
of both1.

As shown in Fig. 3.2, this excitation signal is fed through a resonance fil-
ter which models the vocal tract by emphasizing certain frequencies corre-
sponding to the formants. Finally, radiation characteristics from the mouth
are modeled by applying a frequency-dependent gain of +6dB per octave2.

Figure 3.2.: The source-�lter model (from Ellis (2006))

This model forms the theoretical basis for the diverse speech analysis tech-
niques, of which the most important are presented in section 3.1.2.

1For voiced fricatives, such as the [Ã] sound in “jealous”, we produce a mixed excitation sig-
nal.

2The harmonic spectrum of the excitation source (which consists of the fundamental fre-
quency and integer multiples of f0) decreases in amplitude with increasing frequency at a
rate of around -12dB/octave, such that voiced speech sounds produced by the source-filter
model will show a spectral slope of -6dB/octave.
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3. Quantifying Prosodic Variables

How Can Emotions or Stress A�ect Speech Production?

The speech production process as described above covers the physical do-
main only. The whole picture, however, includes a cognitive component as
well (this is the upper area in Fig. 3.3): speech production starts with an idea
what to say, followed by the creation of an appropriate sentence in terms
of the sequence of sounds to be uttered and the prosodic realization. This
language code is then translated into appropriate neuromuscular commands
which are further transmitted to the muscles which control the respiratory
system and the vocal tract.

Figure 3.3.: Schematic diagram of speech production (from Cummins et al. (2015))

The British psychologists Baddeley and Hitch (1974) developed a model of
humanworking memory which describes the system that enables us to keep
things inmindwhile performing complex tasks like reasoning or comprehen-
sion. Their model consists of a central attentional control system which is
supported by two short-term storage systems: one for visual material, which
is called the visuo-spatial sketchpad, andone for acoustic andverbalmaterial,
which has been named the phonological loop (Baddeley, 2003). The phono-
logical loop helps to control the articulatory system and to store verbal infor-
mation for a few seconds. Reduced cognitive capacity due to external influ-
ences does not only affect ideation, but also impacts the generation of neuro-
muscular commands as well as the proprioceptive feedback loop (Krajewski
et al., 2012).
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3.1. Speech Production

These external influences can be stressors of second or third order (cp. Tab.
1.1 on page 14 — note that, in this taxonomy, emotions act as third-order
stressors).

I Third-order stressors affect the speech production process at its high-
est level. Excessive demand due to high workload or highly negative
emotional states like anxiety or fear may affect the ideation process
(Levelt, 1999).

I Second-order stressors have impact on the conversion of language
code into neuromuscular commands, with noise being themost promi-
nent stressor. The term perceptual stressor indicates that there is some
kind of conscious interpretation of the stressor (Murray et al., 1996), but
without involving higher-level emotions.

I First-order stressors, on the contrary, step in at the link between cogni-
tive planning and motor actions by unconsciously modifying the neu-
romuscular signal transduction process and thus provoking changes in
articulator movements; the proprioceptive feedback loop may also be
affected. Responsible are chemical effects in most instances, be it ex-
ternally (e.g., medical or narcotic drugs) or internally triggered (e.g., ill-
nesss or fatigue).

I Zero-order stressors directly result in physical changes to the speech
production system. Themental stage is not affected, but the articulator
responses change due to some kind of force they are exposed to.

In stressful situations, we tend to increase our respiration rate which causes
an increase in subglottal pressure during speech (Rajasekaran et al., 1986).
This will, on the one hand, lead to an increased pitch; on the other hand,
it will also affect the rhythmic pattern when the same amount of words is
to be produced within shorter time windows between consecutive breaths.
For decision-making under time pressure as well as in noisy environments,
we tend to raise our vocal effort to make ourselves heard (Hansen and Patil,
2007). This will presumably not only be reflected in average intensity over
the utterance, but also in particular emphasis of the more important sylla-
bles. Since the capacity of the lungs is limited, other syllables will have to be
de-emphasized in compensation; in other words, the prominence pattern of
the utterance would gain in dynamics.

Summing up, there is considerable evidence that emotions and stress affect
the speech signal inmanyways. In the next section, wewill see inwhichways
useful informationcanbeextracted fromthe recorded speech signal as abasis
for the calculation of prosodic variables.
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3.1.2. Analyzing Speech

Speech is recorded with microphones. A microphone is a transducer which
converts the air pressure variations of a sound wave into an electrical signal.
This signal is nowadays commonly digitized, resulting in a sequence of num-
berswhich represent the air pressure in equidistant time steps. This represen-
tation is referred to as the time domainwhich contains valuable information
on the temporal occurrence of sound events and their intensity. To deter-
mine which frequencies are present in a sound sample, the signal has to be
transformed into the frequencydomainusing theFourier transform, yielding
the spectrum of the sound. Fig. 3.4 exemplarily shows time- and frequency-
domain representations of different phonemes3.

Figure 3.4.: Di�erent speech sounds in time (left) and frequency domain (right). (From

Ellis (2006), slightly modi�ed)

As we can see here, the different elementary sounds of speech look com-
pletely different in both time and frequency domain.

3The Fourier transform results in a complex spectrum which contains both magnitude and
phase information. However, for ourneeds, themagnitude spectrum contains all necessary
information; so whenever you read the term “spectrum” without further specification in
this thesis, I am talking about the magnitude spectrum.
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3.1. Speech Production

I Vowels are characterized by a regular, periodic course over time, as vis-
ible in the topmost left plot. The period is approximately 0.1 seconds,
which corresponds to an f0 of about 100Hz. In the spectral represen-
tation on the right side, the first three formants are visible. With F1 ≈
500Hz and F2 ≈ 1500Hz, this vowel is likely to be a German “ö” sound
([ø] in IPA4 notation).

I The second row shows both time- and frequency-domain examples for
a fricative sound as the [S] in “dish”. There is apparently no periodicity
visible in the time-domainplot, and the spectrum isdominatedbyhigh-
frequency parts, contributing to the sharpness of this sound5.

I A glide, as visualized in the third row, is a voiced sound in which the
airflow is gliding over the tongue before exiting the lips; think of the [w]

in “why”. Glides are also called semi-vowels, because they act as conso-
nants before or after vowels; they also show a certain degree of period-
icity, but are “transitional” in nature.

I In the bottom row, the nature of a plosive (sometimes also called stop)
becomes obvious — this could be a [p] as in “pin”, for example. The
time-domain representation reveals the three stages of a plosive sound,
which are catch–hold–release.

The examples in Fig. 3.4 have been manually extracted, so the temporal and
spectral representations are only valid for these short extractions of a speech
signal. If we applied the Fourier transform to longer speech signals, wewould
get a smeared spectrumwhich contains overlaid information frommany dif-
ferent speech sounds. In order to track spectral information over time, we
can instead apply the Short-Time Fourier Transform (STFT) which effectively
calculates individual spectra for successive short excerpts of the signal. Its
visualization, the spectrogram, shows the spectral amplitude both over fre-
quency (ordinate axis) and time (abscissa axis), as shown in Fig. 3.5. Ampli-
tude values are coded as colors or gray-scale values; in the example shown
here, high amplitude values are white while low values are black. The fun-
damental frequency as well as the formants (if present) are vaguely visible as
bright horizontal lines during voiced parts.

The single speech chunks are extracted from the speech signal using a win-
dow function which is zero outside a chosen interval and non-zero inside.
Depending on the length of the extracted speech chunks, either temporal or

4IPA is short for International Phonetic Alphabete.
5More on sharpness can be found in section 4.4.2. Have you noticed that “sharpness” itself
starts with a sharp sound?

49



3. Quantifying Prosodic Variables

-1

0

1
A

m
pl

itu
de

Time-Domain Signal

Spectrogram

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s)

0

1

2

3

4

5

6

7

8

F
re

qu
en

cy
 (

kH
z)

Figure 3.5.: Time-domain representation of speech signal (top), and corresponding spec-

trogram (bottom). High amplitude values are marked white.

spectral signal characteristics are emphasized: the longer the analysis win-
dow, the greater the number of spectral bins6, and the lower the lowest fre-
quency which can be captured by the Fourier transform. On the other hand,
the shorter the analysis window, the greater the temporal resolution; i.e., the
more accurate the information in the time domain. Depending on the pur-
pose of analysis, different window lengths are reasonable; in general, a win-
dow length of about 20ms has established itself as a good choice for speech
analysis since speech sounds can be assumed as wide-sense stationary over
this period. For f0 tracking, on the other hand, the window must be long
enough to capture frequencies down to 50Hz for male voices, and if a non-
rectangular window is used, at least 3 fundamental periods should fit into the
window as a rule-of-thumb. One can achieve an adequate step size nonethe-
less by shifting the analysis window just by, e.g., 10ms in each time step while
maintaining a window length of, e.g., 60ms7.

6The spectral sampling points are called bins. The discrete-frequency spectral energy, rang-
ing from0H z to fs

2 H z , is quantized equally intoN bins. Thenumber of bins is often referred
to as the spectral resolution.

7The step size is the “update rate” of the spectral information, while the temporal resolution
is still determined by the window length.
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3.2. Speech Perception

3.2. Speech Perception

3.2.1. The Human Ear

Theprosodicmodel presented in section 1.2.3 includes acoustic, auditive and
prosodic variables. Auditive variables are the perceived equivalents of their
acoustic counterpartswhich are calculatedbasedonmodels of human sound
perception. To understand the nonlinear relationship between the acoustic
and the auditive variables, let’s have a look at Fig. 3.6 and follow a sound
through the ear.

Figure 3.6.: Physiology of the human ear (from Lindsay and Norman (1977))

What we perceive as “sound” starts with the propagation of a pressure wave
through the air. Having been collected by the pinna and having traveled
through the auditory canal, this pressure wave causes the eardrum to vibrate.
These vibrations are transported by the bones of the middle ear to the oval
window, which marks the transition to the inner ear. The vibrating oval win-
dow brings the fluids in the cochlea into motion, which in turn produces
vibrations on the basilar membrane which is located inside the winding part
of the cochlea. The basilar membrane is covered with tiny hair cells which
are each connected to an auditory nerve fiber. Depending on the frequency
of the incoming sound wave, a certain region of the basilar membrane is
stimulated.
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3. Quantifying Prosodic Variables

The frequency resolution of our auditory system is limited with regard to its
discrimination ability between different sounds. Fletcher (1940) discovered
that the cochlea behaves like a bank of overlapping bandpass filters where
frequency interaction phenomena within one bandpass filter are evaluated
differently than when they exceed the bandwidth of such an auditory filter.
These so-called critical bands play a major role in sound perception, as they
influence the sensing of loudness (→ 3.2.3), roughness (→ 4.4.1), and sharp-
ness (→ 4.4.2).

So, the process of hearing involves sound propagation in the air as well as
in solid bodies and in liquids; and involves a frequency-to-location trans-
formation on the basilar membrane. The nonlinear effects emerging along
this transmission chain can be captured by small microphones placed inside
the auditor canal, through the calculationof transfer functions betweenouter
and inner ear, or by adequately designed listening tests.

In the following two sections, I will summarize the relevant findings from
the literature concerning pitch and loudness perception. A third section is
concerned with the perception of syllable timing and syllable length, which
builds not only on the physiology of the human ear, but also on the cerebral
evaluation of the neural stimuli.

3.2.2. Pitch

The harmonic structure of voiced speech signals is produced by a periodic
opening and closing of the vocal folds. The inverse of the period is the fun-
damental frequency of speech, often abbreviated as f0. There is a nonlinear
relationship between this acoustic variable and its auditive equivalent which
we call pitch.

The first attempt to construct a subjective scale for themeasurement of pitch
was made by Stevens et al. (1937) who asked test persons to determine the
“half-value” of pitches at various frequencies, aiming towards a measure
which doubles in values when a sound is perceived as “twice as high”. The
resultingmel scale (taken from the root of the wordmelody) approximately
shows a linear behavior up to 500 Hz and a logarithmic behavior above 500
Hz. This means that, e.g., the musical tone a′′′ at 1720 Hz — two octaves
above a′ at 440 Hz, which is a quadruplication in frequency — is perceived
only 2.5 times as high as a′.

More extensive experiments on the subject resulted in alternative calculation
formulas for subjective pitch, including those of Fant (1968), Makhoul and

52



3.2. Speech Perception

Cosell (1976), and Lindsay and Norman (1977). A comparison of these no-
tations, shown in Fig. 3.7, reveals that they are very similar in their global
behavior; especially in the interesting frequency range for human speech.
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Figure 3.7.: Comparison of several pitch scales as a function of fundamental frequency:

wide-band frequency range (left) and interesting frequency range for f0 in

human speech (right).

All pitch valuesused for intonationandprominence calculations in this thesis
employ the widely-used formula published by Makhoul and Cosell (1976):

fmel = 2595 · log10
(
1 + fH z

700

)
. (3.2.1)

3.2.3. Loudness

Loudness is a subjective quantity corresponding to the perceived sound in-
tensity. Loudness perception is by far not just a function of sound intensity,
but also depends on frequency, bandwidth, duration, input direction (frontal
vs. lateral), and possible temporal masking effects (Zwicker and Fastl, 1999).
In this section, I try to summarize themost relevant aspects of sound intensity
perception.

Sound Intensity and Sound Pressure

Sound intensity corresponds to the energy carried by a sound wave which
depends both on the sound pressure p and the particle velocity v:

I = pe f f · veff . (3.2.2)

For plane waves, sound pressure and particle velocity are related via the spe-
cific acoustic impedance (z = p/v ⇔ v = p/z), such that sound intensity
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is proportional to the square of the sound pressure (I ∝ p2). The human
hearing system is able to detect pressure variations of just a few micropas-
cals, while the threshold of pain for very loud sounds is approximately 100Pa.
This enormous range can best be captured by a logarithmic measure, so the
sound pressure level Lp has been defined as

Lp = 10 log10

(
p2

p 2
0

)
= 10 log10

(
p

p0

)2
= 20 log10

(
p

p0

)
... [dB SPL] (3.2.3)

where the reference pressure p0 = 2 · 10−5Pa approximates the threshold of
audibility. In the samemanner, a reference sound intensity has been defined
as I0 = 1 · 10−12 W

m2 , such that

LI = 10 log10
(

I

I0

)
≡ Lp . (3.2.4)

In acoustics, the usage of soundpressure level is common; presumably due to
the fact thatmicrophones capture variations in pressure rather than in inten-
sity. The unit dB SPL indicates that the value is an absolute valuewith respect
to the reference pressure p0.

Loudness Level

The auditory system does not have a flat frequency response, which means
that some frequencies aremore attenuated than others. The results of several
psychoacoustic experiments have led to the formulation of equal-loudness
contours (Fig. 3.8) which demonstrate the effect of frequency on loudness
perception8.

Loudness level ismeasured inphons. By definition, 40phons are the loudness
level of a 1 kHzpure steady toneat 40dBSPL, and the corresponding40-phons
curve indicates sound pressure levels leading to the same loudness level as a
function of frequency. The threshold of audibility also has an equal-loudness
contourwhich is the 3-phons contour by definition9. All equal-loudness con-
tours clearly show that our ears are most sensitive in the area between 2kHz
and 5kHz. Towards both ends of the audible frequency range, the soundpres-
sure levels needed to maintain a certain loudness level increase exponen-
tially.
8Loudness level is also a function of direction. These curves in Fig. 3.8 are valid for a plane
sound field; Zwicker and Fastl (1999) have calculated a frequency-dependent correction
curve for diffuse sound fields; but this fact is not of relevance for speech analysis.

9The threshold in quiet at 1kHz is 3dB SPL and not 0dB SPL, so the threshold of audibility is
indicated by the 3-phons curve for the sake of consistency.

54



3.2. Speech Perception

Figure 3.8.: Equal loudness contours (from Hartmann (2004))

Loudness

Loudness is a ratio quantity, meaning that that one sound can be, for exam-
ple, “twice as loud” as another. Stevens (1936) introduced an exponential
function to calculate the respective loudness N (in sone) for a certain loud-
ness level LN (in dB SPL), where a halving or doubling in sones corresponds
to a halving or doubling in perceived loudness and 1sone was defined as the
loudness of a 40-phons sound. The quintessence ofmany experiments is that
the level of a 1-kHz tone in free field has to be incremented by 10dB SPL to
achieve a doubling of perceived loudness, and vice versa, that a decrement
by 10dB SPL results in a halving of the loudness impression. This is especially
true for values larger than 40dBSPL; below that soundpressure level, the level
difference which is necessary to achieve a loudness doubling or halving be-
comes smaller (Zwicker and Fastl, 1999). This relationship is sketched in Fig.
3.9 a).

The impressionof loudness is also dependent on thenumber of critical bands
coveredby the sound. Whenwehear anarrow-bandnoise signal and increase
its bandwidth step by stepwhilemaintaining the overall energy, the loudness
impression remains constant up to a certain point, which is the critical band-
width (→ 3.2.1). From this point, the loudness increases as a function of its
bandwidth. In other words, our hearing system evaluates the contributions
of a sound within the critical band differently than it does outside the critical
band.
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If we are talking about transient (i.e., not steady-state) sounds, the duration of
the soundalso contributes to loudness perception; is it constant for durations
greater than 100ms and decreases for shorter durations, as displayed in Fig.
3.9 b).

(a) Level increment needed for doubling of per-
ceived loudness as a function of level.

(b) Loudness as a function of
sound duration.

Figure 3.9.: Further sound properties which a�ect loudness perception (from Zwicker and

Fastl (1999))

Another important contribution to the perception of loudness are both tem-
poral and spectral masking effects, which are, however, not relevant when
considering a single speaker in a quiet environment.

(Zwicker, 1982) formulated an algorithm for loudness calculation which has
been standardized in an ISO norm based on values of specific loudness in
single critical bands. In a first step, the excitation of the basilar membrane
is calculated from the intensity of the acoustic signal by considering the re-
sponse characteristics of the outer and middle ear as well as of the cochlea.
The specific loudness N ′ is then calculated as a function of the excitation E

with (Zwicker and Fastl, 1999):

N ′ = 0.08
(

ET Q

E0

)0.23 [(
0.5 + 0.5 E

ET Q

)0.23
− 1

]
. . . [sone/Bark] (3.2.5)

where ET Q is the excitation at the threshold in quiet and E0 is a “reference ex-
citation” which corresponds to the reference sound intensity I0. The critical
bands are commonly approximated by a third-octave band filterbank. The
overall loudness N is finally calculated by integrating over all specific loud-
nesses:

N =

∫ 24Bar k

z=0
N ′dz (3.2.6)

The difference of a signal’s short-time energy and loudness is impressively
shown in Fig. 3.15 on page 72.
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3.2.4. Syllable Timing and Syllable Length

The syllable is the basic rhythmic unit of speech. Before the first single letters
were invented, it was syllabic writing which replaced the pictographs around
2000 BC (Fischer, 2001). Today, it is beyond controversy that timing happens
on the syllabic level; however, it is still pretty unclear what exactly constitutes
a rhythmic event.

From a phonologic point of view, a syllable is made up of a vowel (or a vowel-
like sound) which can be preceded or followed by one or more consonants.
Preceding consonants form the syllable’s onset, following consonants are
called the coda; the central vowel is also known as the nucleus. Linguists clas-
sify syllabic structures as shown in Tab. 3.1, marking vowel-like phonemes
with a V and “consonantic” phonemes with a C.

Orthography Phonemes (IPA) C-V Structure

“a” /æ/ V

“do” /du:/ CV

“at” /æt/ VC

“cat” /kæt/ CVC

“scratched” /skrætSd/ CCCVCCC

Table 3.1.: The relationship of consonants and vowels to syllable structures (examples

taken from Villing (2010))

A syllable thus has a characteristic structure with both a defined starting and
ending point. From this definition, we can determine its length, but it is not
possible to derive a precise point in time to be the syllable event time. If you
had to clap your hands synchronously while pronouncing the monosyllablic
words from Tab. 3.1, you probably would clap at the very beginning of “at”,
but more towards the end of “do” — this means you have a certain feeling of
that syllable event time.

To answer the questionwhere the rhythmic beats of speech are located, Allen
(1972) conducted a series of listening tests and concluded that, for English,
the rhythmic stress beat is perceived “around the release of the initial conso-
nants and the onset of the nuclear vowel”. Morton et al. (1976) introduced the
term perceptual center (p-center) — initially with respect to whole words—
for the specific moment at which a brief event is perceived to occur. Several
mathematicalmodels for the determinationof p-centers for isolated syllables
have been formulated since then (Marcus, 1981; Gordon, 1987; Howell, 1988;
Pompino-Marschall, 1989; Scott, 1993; Harsin, 1997), each based on different
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3. Quantifying Prosodic Variables

acoustic properties of the speech signal. A comparative study has been con-
ducted by Villing (2010), who tested both consistency and accuracy of pre-
dicted p-centers for speech, musical and synthetic sounds.

To arrive at something one could call speech rhythm, timing information
alone is not sufficient; a rhythmic impression arises with the interaction of
“strong” and “weak” elements, that is, less and more accentuated (or promi-
nent) syllables. As we have learned, prominence is a function of all three
auditive variables (see Fig. 1.3 on page 8), so syllable length also contributes
significantly to the rhythmic impression of an utterance.

But what constitutes the perceived length of a syllable? A simple musical ex-
ample shall form the basis of discussion:

Figure 3.10.: A sequence of musical tones, expressed legato (left) and staccato (right).

Whatwe see is a repeated sequence ofmusical tones consisting of four eighth
notes, one quarter note, and one quarter rest. In the first bar, a slur indi-
cates that the eight notes are to be played legato, which is the Italian word
for “bound”. In the second bar, the dots indicate that the eight notes are to
be played staccato, which means “detached”. In both cases, the (temporal)
intervals between the note onsets are identical10; the perceived note length is
determined by how long the notes are held.

It is thus important to note that the length of a syllable does not necessarily
extend to the beginning of the subsequent syllable. Amethod to estimate the
perceived syllable length is presented in section 3.4.1.

10In the case of, e.g., a piano sound, its onset can be equated with its perceptual center.
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3.3. Intonation

3.3.1. Tracking the Fundamental Frequency

The acoustic basis of all melodic phenomena in speech is the fundamental
frequency (f0) contour of a speech sound. The term fundamental frequency
refers to the lowest frequency in a mixture of harmonic waveforms. Strictly
speaking, periodic implies “repeated exactly over time”, which is not the truth
even for very short extractions of a speech signal. We can, however, assume
wide-sense stationarity if we cut the signal into very short parts for analysis
purposes, such that the signal statistics are approximately constant over that
short time, and estimate the fundamental frequency for this short frame.

Fundamental frequency tracking is a common task in the world of audio sig-
nal processing, so there are several establishedmethods to choose from;most
of them even available as open-source programming code. Each of these
methods, however, has its own advantages and disadvantages. Most of them
can be reduced to three alternative basic principles for f0 estimation which
will be presented in the following, before discussing the algorithm of choice
for this thesis.

The Auto-Correlation Method

A straight-forward approach for f0 tracking is periodicity detection using the
auto-correlation function (ACF). The ACF is the integral over the product of a
windowed signal excerpt with a shifted version of itself:

rx (τ) =
∫

x(t )x(t − τ)dt , (3.3.7)

where the lag τ indicates the relative time shift. This function has a global
maximum for τ = 0. If there is any periodicity in the signal, we will ob-
serve local maxima for τ > 0. Assuming the fundamental frequency to be the
most prominent frequency in the complex signal mixture11, the fundamen-
tal period T0 can be determined by picking the maximum peak of the ACF at
τ = τmax . The fundamental frequency then is given by the reciprocal of the
period,

f0 =
1

T0
. (3.3.8)

Since the peaks of the ACF are periodically repeated, the auto-correlation
method is prone to octave errors, meaning that it might erroneously pick a
11This assumption does not generally hold for all kinds of sounds, but is valid for a mono-

phonic speech signal.
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3. Quantifying Prosodic Variables

peak in the ACF which corresponds to half or double the fundamental fre-
quency. Therefore, the range of lags has to be restricted to reasonable values,
τmin <= τ <= τmax .

When calculating the normalized auto-correlation,

r ′x (τ) =
rx (τ)
rx (0)

, (3.3.9)

we get a measure for the harmonic strength of the signal with R0 = r ′x (τmax ),
R0 = [0 . . . 1]which can be used to decide if a small chunk of speech is voiced
or unvoiced.

An excellent, in-depth description of the auto-correlation method has been
published by Boersma (1993).

Spectral Peak-Picking

The fundamental frequency of a sound can obviously also be determined
from themagnitude spectrum in the frequency domain by selecting themost
prominent peak within a reasonable range, fmin <= f0 <= fmax .

Though simple in nature, this approach has the drawback of limited fre-
quency resolution for short time windows as a consequence from the time-
frequency uncertainty principle12. The frequency resolution of a given spec-
trum is simply the sampling frequency divided by the window length,

∆f =
fs

N
, (3.3.10)

which results in at least 15H z for a comparably long analysis window13.

On the contrary, the spectral approach allows for polyphonic detection,
which is not possible with time-domain methods. Techniques such as time-
frequency reassignment use local estimates of instantaneous frequency and
group delay to enhance the resolution both in time and frequency (Auger
et al., 2013).
12Küpfmüller’s uncertainty principle says that it is impossible to sharply localize a signal in

both time domain and frequency domain at the same time; when using a long window, we
achieve good frequency resolution at the cost of temporal resolution, and vice versa.

13As an example, consider male speech recorded at fs = 16kH z , which is a typical sampling
rate for speech. Setting the minimum frequency to be detected to fmin = 50H z demands
a window length of 60ms which equals 960 samples. To employ the fast Fourier transform
(FFT), we need a window length which is a power of two, so we will chose N = 1024.
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3.3. Intonation

The Cepstral Approach

Another Fourier transform of the logarithmized magnitude spectrum yields
the so-called cepstrum of a signal:

Cy (t ) = F {log |Y (f )|} . (3.3.11)

The cepstral domain is of interest, because it allows the separationof “source”
and “filter” (see the simplified model of speech production in section 3.1.1)
using a mathematical trick: the Fourier transform turns a convolution of two
signals into a multiplication of their spectra, and at the same time, the loga-
rithm turns amultiplication into anaddition (OppenheimandSchafer, 2004).
In mathematical terms,

y (t ) = x(t ) ∗ h(t ) (3.3.12)
Y (f ) = X (f ) · H (f ) (3.3.13)

log |Y (f )| = log |X (f )| + log |H (f )| (3.3.14)

So, peak-picking in the cepstral domain theoretically allows to track the fun-
damental frequency of the glottal source alone, without disturbing influences
from the vocal tract. Still, other algorithms using temporal and/or spectral
methods have to be proven to be equally precise and sometimes even more
robust.

Approach Used in this Thesis

Zahorian andHu (2008) have developed yet another algorithm for pitch track-
ing (YAAPT ) which combines time-domain and frequency-domain process-
ing. I have chosen this algorithm for two reasons: first, it has been designed
and tested to be used with speech signals, and second, it has proven to be
robust also for lower signal-to-noise ratios.

One commonartifact of f0 tracking algorithms are octave errors. To overcome
this phenomenon, the YAAPT algorithm includes a special refinement proce-
dure of the estimated frequency track over time.

The algorithm works as follows:

1. Preprocessing: The algorithm considers both the original input signal
aswell as a squared copy of it. Doing so, sumanddifference frequencies
are created, which can be used to partially restore amissing fundamen-
tal in case of band-limited signals.
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3. Quantifying Prosodic Variables

Figure 3.11.: Working principle of the YAAPT algorithm (from Zahorian and Hu (2008))

2. Spectral f0 tracking: a spectrogramof the squared signal is created, and
a series of f0 candidates is estimated using a spectral harmonics correla-
tion (SHC). In addition, a voiced/unvoiced decision is made by calcu-
lating the normalized low-frequency spectral energy for each frame and
comparing it with a predefined threshold value.

3. Temporal f0 tracking: another series of f0 candidates is estimated using
the Normalized Cross-Correlation Function (NCCF) between the non-
modified and the squared input signal. Compared to the standard ap-
proach using the auto-correlation function, the NCCF results in more
prominent peaks which are alsomore robust versus amplitude fluctua-
tions. In a subsequent step, these f0 candidates are further refinedbased
on the spectral f0 track estimated in step 2.

62



3.3. Intonation

4. Combination: The “most likely” sequence of f0 values is determined
using Viterbi decoding14, based on the assumption that the frame-to-
frame variation of the fundamental frequency track should be minimal
over voiced regions. Based on the voiced/unvoiced information from
step 2, the final f0 track is then interrupted during unvoiced regions.

For further details on the algorithm, the interested reader is referred to the
original publication (Zahorian and Hu, 2008). Fig. 3.11 visualizes the steps
described above; the numbers in the graphic correspond to the numbers in
the text.

Fundamental frequencies are estimated in stepsof 10ms usingHann-windowed
segments of 60ms , which is three times the period of a 50H z signal, thus en-
suring that at least one “full” periodof the lowest frequency tobe foundwould
fit into the tapered analysis window.

3.3.2. Creating a Continuous Pitch Contour

Talkin (1995) has compiled a comprehensive list of natural speech phenom-
ena which make f0 estimation a challenging task for any algorithm. This is a
summary of the most relevant points:

I Many parts of the speech signal are not “purely voiced” or “purely un-
voiced”, but mixed-excitation. When tracking fundamental frequency
in speech, we make the simplifying assumption that only these two ex-
tremes exist.

I The fundamental frequency of speech is likely to change rapidly with
time, so the assumption of wide-sense stationarity over the complete
analysis frame of 60ms may not hold in some cases.

I A multiple of the true fundamental frequency can be emphasized by
vocal-tract resonances and transmission-channel filtering, thus ap-
pearing as the most prominent harmonic in the complex sound mix-
ture. It is furthermore common that sub-harmonics appear at integer
fractions of the true f0.

I The listenermight also perceive a distinct pitch during unvoiced excita-
tion due to narrow-band filtering by certain vocal-tract configurations.

These inaccuracies in the measured f0 track are inevitable due to the nature
of speech signals, and they remain after having calculated the corresponding
pitch values using formula 3.2.1 (because we just apply a nonlinear scaling
14Viterbi decoding is a method to find the most probable sequence of values from the several

possibilities with regard to a certain criterion using dynamic programming.
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Figure 3.12.: Illustration of the main steps of the YAAPT algorithm. From top to bottom:

(a) original speech signal in the time domain;

(b) spectrogram of the original signal, low-frequency energy and approxi-

mate f0 track from SHC (step 2);

(c) the various f0 candidates from the NCCF, re�ned using spectral infor-

mation (step 3, colored) as well as the �nal f0 track found through Viterbi

decoding (step 4, black);

(d) spectrogram of the original signal, voiced/unvoiced bit signal and �nal

f0 track.
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3.3. Intonation

of the f0 values). However, our impression of “speech melody” does neither
involve such rapid fluctuations as can be observed in the micro structure of
the pitch signal, nor do we consciously perceive all these bursts and stops
which happen during non-vocalic phonation as significant interruptions of
the melodic flow. This is presumably due to the fact that a human listener
usually concentrates onwhat is said and recognizes prosodic cues only in the
background. Beyond, as tHart (1981) found out, tonal differences of less than
2-3 semitones are commonly imperceptible in communicative situations15.
This just noticable difference (JND) is remarkably higher than those reported
for pure tones (Rakowski, 1971, amongst others), as it accounts for the highly
dynamic nature of speech sounds.

In addition to that, we should keep inmind thatmany of the prosodic param-
eters mentioned throughout the literature consider timing and level of peaks
in the pitch track. In other words: also from the analysis perspective, there
emerges the need for a continuous and reasonably “smooth” curve to be de-
scribedbyparameters and statistics. This opinion is generally agreedbyother
phoneticians; a smoothed f0 track is the basis of several existing tools for into-
nation transcription (Maghbouleh, 1998; Mixdorff, 2000; Hirst et al., 2000).

In the following, I will describe the algorithm for pitch curve interpolation
andsmoothingwhichcreates thebasis for allmelodicparameter calculations
(see section 4.2). As depicted in Fig. 3.13, it consists of three main steps:

1. Interpolation—In-between voiced segments, themissing pitch values
are estimatedusing spline interpolation16. Thepitch contour startswith
thefirst andendswith the last voiced segment; there is noextrapolation.

2. Stylization— Inspired by the MOMEL algorithm (Hirst and Espesser,
1993), the interpolated signal is cut into overlapping frames of 300ms
in length (50% overlap). The pitch course in these frames is then one-
by-one approximated by a second-order polynomial, before a stylized
pitch track is synthesized by combining the single polynomials using
an overlap-and-add method.

3. Smoothing—The stylized curve is smoothedby amoving-averagefilter
which length has been experimentally determined to 70ms (= 7 samples
at fs = 10Hz).

15Three semitones are the average threshold for untrained subjects; trained subjects per-
formed only slightly better.

16Splines are piecewise cubic polynomials which consider the further course of the preceding
and following values.
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Figure 3.13.: Pitch contour stylization. Top: pitch values available from f0 measurements
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3.4. Duration

As discussed in section 3.2.4, we need to knowboth the perceptual center and
the duration of a syllable as a basis for the calculation of rhythmic speech
parameters. As all of the p-center models evaluated by Villing (2010) expect
an isolated syllable as input anyway, it is an obvious move to detect syllable
boundaries first.

Segmenting a continuous flowof speech sounds into single syllables is a non-
trivial task even for humans. Although listeners widely agree on the number
of syllables (Villing et al., 2006), they show a considerable amount of incon-
sistency when asked to assign syllable boundaries to recorded speech. Espe-
cially a consonant between two vowels (“VCV”) seems to be ambiguous be-
tween the end of the first syllable and the beginning of the second syllable
(Goslin and Frauenfelder, 1999); phonologists call this phenomenon ambi-
syllabicity (Kahn, 2015).

3.4.1. Blind Estimation of Syllable Boundaries

Within the scope of my work, I want to facilitate analysis of spontaneous
speech; a syllable boundary detection algorithm thus has to work rule-based
and data-independent.

Several approaches for blind syllable boundary estimation have been pub-
lished over the years, starting with Mermelstein (1975) who used the differ-
ence between the signal intensity envelope and its convex hull for the identi-
fication of potential boundaries. If a certain threshold was exceeded, the seg-
ment was divided into sub-segments which were then recursively evaluated.
Extensions ofMermelstein’s techniquewere proposed byWu et al. (1998) and
Meinedo et al. (1999), but as well as neural-net based approaches for syllable
segmentation (Noetzel, 1991; Shastri et al., 1999), none of them prevailed as
the tool-of-choice in the linguistic research community; presumably due to
the fact that they generally performwell with clearly articulated syllables, but
not with short, unstressed syllables (Villing et al., 2004).

In general, envelope-based syllable segmentation works quite well if the al-
gorithmparameters are set suitably. Depending on the speaker, however, im-
portant prosodic parameters such as speech tempomay vary and thusmight
seriously affect the performance of the syllable detection algorithm (Villing
et al., 2006). Simply speaking, it is possible to tune any algorithm in such a
way that it detects a lot of potential syllable boundaries — we might end up
with 99% of the syllable boundaries identified correctly, but at the expense of
an enormous number of misdetections (“false positives”).
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3. Quantifying Prosodic Variables

A Self-Tuning Algorithm

So, whatwedesire is some kind of self-tuning algorithmwhich autonomously
determines the number of syllables before setting the syllable boundaries.

Since we may assume that every syllable consists of a vowel or a voiced con-
sonant which is optionally surrounded by consonants (see section 3.2.4), an
approximatemeasure for the number of syllables in an utterance is the num-
ber of voiced segments in the speech signal; that is, homogeneous blocks for
which the fundamental frequency tracker has found reasonable f0 values. It
may, however, be the case that a syllable endswith a voiced region and the fol-
lowing syllable starts with one — think of “the end” —, so adjacent syllables
may share one single voiced segment.

Based on this assumption, I have designed an algorithm for blind syllable
segmentation which creates a suitable decision function based on signal
loudness and refines both number and duration of the detected syllables in
subsequent steps:

1. Boundary Candidates — The algorithm creates an extremely smooth
version of the loudness contour using moving-average filtering (Fig.
3.14, top). This smooth version is then subtracted from the original
loudness contour, resulting in something which could be interpreted
as “relative local loudness” (Fig. 3.14, middle). This curve serves as a
the decision function, from which those local minima are selected as
candidate boundaries which fulfill the following two criteria:

a) Their valuemust be below zero (i.e. lower than the average loudness
in this point).

b) Theymust be at least 100ms apart from each other (=minimum syl-
lable length).

2. Boundary Verification — For each potential syllable between two
boundary candidates, the corresponding pitch values are analyzed. De-
pending on the number and the length of the voiced segments within
the boundary candidates, one of the following actions is taken:

a) One voiced segment of sufficient length: no action. The boundary
candidates are marked as verified boundaries.

b) No (or too short) voiced segment: the left candidate boundary is
deleted, and the region is attached to the previous syllable.

c) More than one voiced segment: the region is split into n syllables
(withn being thenumberof voiced segments) by inserting additional
boundaries centrally between two voiced segments.
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3. Perceived Syllable Lengths — Within each verified syllable, the per-
ceived start of the syllable is set to that point where the first rising slope
reaches 15% of its total height, and the perceived end of the syllable is
accordingly set to that point where the last falling slope falls down to
15% of its total height.

This procedure is illustrated in Fig. 3.14, using an arbitrary sentence from
Emo-DB (“Der Lappen liegt auf dem Eisschrank”). The first plot shows the
signal loudness curve and its smoothed version. The curve has been normal-
ized such that the range of values covers [0 . . . 1]. The second plot shows the
decision function and the voiced segments as well as the syllable boundary
candidates. Obviously, the first two syllables share the same voiced segment:
the coda of /de:5/ and the onset of /lap/ are both voiced. A look at the last
two syllables demonstrates the working principle of the boundary verifica-
tion step: the potential boundary around 1.3s is deleted, because the part of
the voiced segment in the following syllable is too short; the potential bound-
ary around 1.65s is deleted, because the following syllable has no voiced con-
tent at all. The third plot illustrates how the criteria for the perceived syllable
length calculation are applied; interestingly, the start and end times of the
perceived syllablesmatch quite well with the impression of the human anno-
tator, whose labeled boundaries are depicted in the fourth plot.

I clearly have to admit that, in some cases, the algorithm fails to meet the
correct number of syllables in the utterance. In this example, the human an-
notator has placed a syllable boundary at approximately 0.6s, whereas the
algorithm identified two boundaries around that point, thereby introducing
an additional syllable. This is due to the fact that the algorithm does not have
any linguistic information onwhat is said, but only places the boundaries ac-
cording to a signal characteristic by looking for minima. Still, this algorithm
performance seems to be the best compromisewe can reach for spontaneous
speech where no linguistic meta-information is available.

The algorithm performance is controlled by three parameters: the assumed
minimum length of the voiced syllable nucleus (set to 50ms), the assumed
minimumsyllable length (set to 100ms), and thewindowwidth of themoving
average filter (set to 200ms). These values originate from a full-factorial pa-
rameter variation study17 onEmo-DBdata andhave been foundoptimalwith
regard to the number of syllables detected. Since these parameters are of lin-
guistic nature and not speaker-specific, I assume that this algorithm should
work equally well on other kinds of speech data.

17Full-factorial parameter variation means that the syllable estimation algorithm has been
tested with any possible combination of different values for these parameters. Details on
this study can be found in appendix A.4.
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Figure 3.14.: First plot: loudness curve (solid) and its averaged version (dotted). Second

plot: relative local loudness curve (solid), voiced segments (gray blocks on

the bottom), and boundary candidates (dashed vertical lines). Third plot:

decision function as above (dotted) and during perceived syllable duration

(solid). Fourth plot: syllable boundaries as labeled by a human annotator.

3.4.2. P-Center Estimation

Thankfully, Villing (2010) has conducted a comparative study between se-
veral models for p-center (PC) estimation which includes the comparison of
prediction accuracy on speech samples. Out of 8 models under test, the ap-
proach proposed by Pompino-Marschall (1989) significantly outperformed
its competitors in terms of root mean square error, maximum absolute error,
and percentage of noticeable erroneous p-center predictions18.

The Pompino-Marschall model is based on the specific loudness in critical
bands, calculated by Zwicker’s method (Paulus and Zwicker, 1972). Having
detected the syllable boundaries of an utterance as described above, the PC
of an isolated syllable is calculated in the following way19:
18The last term indicates that, just as for pitch, there is a just noticeable difference for timing as

well; it has been determined as 6ms for inter-onset-intervals (IOIs) which are shorter then
240ms, and 2.5% of the IOI for longer intervals (Friberg and Sundberg, 1995). Villing uses
5% of the IOI as a threshold value.

19Amore detailed description of this PC estimation method can be found in (Villing, 2010).
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I Within each critical band, rising and falling edges are detected and
marked as partial events if they are sufficiently steep.

I Several coherent risingor fallingpartial events are individuallyweighted
in anon-uniformway (depending on their distance to thepeakbetween
“rising” and “falling”) before being integrated into a single peak onset
event or a peak offset event, respectively.

I Matching peak onset and offset events are integrated to form peak
events which are calculated as the center of gravity of its corresponding
onset and offset events.

I Finally, all peak events from all critical bands are integrated to form the
center of gravity of the syllable, which is equivalent to its perceptual
center.

A comparison of annotated and calculated syllable boundaries including
their respective perceptual centers is shown in Fig. 3.15.
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3.5. Prominence

From the literature, we know that all three acoustic variables (intensity, fun-
damental frequency, and time) contribute to the perceived prominence of
a syllable (compare the sketch of the prosody model in Fig. 1.2 on page 7).
These three variables are connected through articulatory relationships, so
they are usually not consciously controlled independently of each other in
spontaneous speech (Kehrein, 2002).

Prominence is thus not only a perceptual quantity; it is a weighted superpo-
sition of perceptual quantities. As explained in the previous sections and de-
picted in Fig. 3.16, loudness, pitch and perceived syllable lengths can be cal-
culated frommeasurable variables using the correspondingmodels of sound
perception,M1,M2, andM3. Thequestion is towhat extent these auditive vari-
ables each contribute to prominence perception. Their individual contribu-
tions are denoted by the weighting factorsw1,w2, andw3. The literature pro-
vides mostly qualitative statements, e.g., that pitch and duration contribute
more to prominence impression than intensity (Fry, 1958). A well-working
concept for automatic prominence detection in German based on acoustic
parameters has been presented by Tamburini andWagner (2007), but the au-
thors note that their weighting factors might be language-specific and thus
not universally valid.

Loudness

Pitch

Perceived

Syllable

Lengths

PROMINENCE

Intensity

Fundamental

Frequency

Time

M1

M2

M3

w1

w2

w3

Figure 3.16.: Prominence as a weighted superposition of perceptual quantities.

The weighting factors w1, w2, w3 can be estimated using regression analysis.
Regression is a statistical approach to model the relationship between an in-
dependentpredictor variable x and adependent response variable y. If several
predictor variables areobserved,weare talkingofmultiple regression. Assum-
ing that the response variable canbe expressed by a linear combination of the
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prediction variables, a multiple linear regression model writes to

y =X · β + ε =
p∑

i=0
xi βi + εi , (3.5.15)

where

y =

©­­­­­­­«

y1

y2
...

yn

ª®®®®®®®¬
, X =

©­­­­­­­«

x1,1 . . . x1,p

x2,1 . . . x2,p
...
. . .

...

xn,1 . . . xn,p

ª®®®®®®®¬
, β =

©­­­­«
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ª®®®®®®®¬
.

This means that the p prediction variables,
{
x1, . . . , xp

}
— which are in our

case the auditive variables loudness, pitch, and perceived syllable length —,
are each weighted by the corresponding regression coefficients,

{
β1, . . . , βp

}
,

to predict the perceived prominence y for each of the n syllables in the utter-
ance. The additional error term, ε, represents the variance which can not by
explained by themodel. The goal is to find regression coefficientswhichmin-
imize the error, i.e., which lead to the most accurate model. The prediction
variablesmaybenon-linear, as long as the overallmodel remains linear in the
parameter vector β. This allows combinationsof predictors, e.g., x1 ·x2, aswell
as higher-order predictors, e.g., x12. However, linear regression requires the
prediction variables to be normally distributed and to have equal variance
within each group.

Before we try to estimate the optimum regression coefficients for syllable
prominence, I would like to discuss some general phenomena of prominence
rating and perception.

3.5.1. Linguistic Function of Prominence

Prominence: A Continuous Variable?

The annotation system used for Emo-DB prominence annotation allows as-
signing one of 31 different levels of prominence to a syllable, which can be
consideredas aquasi-continuous rating scale. This scalehasbeen introduced
by (Fant and Kruckenberg, 1989); and itmay prevent the annotator from feel-
ing limited in his freedom to quantify the perceived prominence. It also al-
lows studies on the relationships between measurable acoustic properties
and prominence perception. However, the just noticeable difference (JND)
between successive levels of prominence perceived by humans is consider-
ably larger than 1/31 of the full scale. In other words: the annotators are
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given a tool which allows more accurate adjustments than they are able to
do. Linguists widely agree on three or four distinguishable degrees of promi-
nence at the most, especially in fluent speech (Kehrein, 2002); the Interna-
tional Phonetic Alphabet (IPA) allows the notation of three different levels of
prominence.

There has been some research on how individuals subjectively rate promi-
nence. Fant and Kruckenberg (1989) found relationships between test per-
sons’ prominence ratings and the self-evaluation of their own “inner voice”
while reading, which suggests that not only acoustic or auditive cues are
involved in prominence ratings, but also some sort of reading experience.
These findings are supported by (Streefkerk, 2002), who states that human
annotators have a certain “expectation of prominence” based on their lin-
guistic knowledge which is combined with cues from the speech signal itself.
Wagner (2005) also founda considerable influenceof the raters’ introspection
in situations where the acoustic and auditive cues were difficult to interpret;
unsurprisingly, especially amongst native speakers of that language. So, there
is a wide consensus in the linguistic community that subjective prominence
ratings are not solely based on acoustic or auditive variables, but that every
annotator introduces some sort of “noise”; which in turn means that it will
not be possible to perfectly predict subjective prominence ratings based on
acoustic analysis of the speech signal.

To investigate if the Emo-DB annotator implicitly used “prominence cate-
gories” or not, I performedagglomerative hierarchical clustering on theunion
set of all syllable prominence values for the entire database. This means that
the clustering algorithm starts with single elements and merges them into
small clusters, before merging these small clusters into larger clusters20. Fig-
ure 3.17 displays a histogram of all syllable prominences in the upper plot.
The bar colors indicate the cluster affiliations; prominence values ranging
from [0..2] form the low-prominence cluster, values from [4..11] are consid-
ered medium prominent, and all values above that are highly prominent21.
These results have been achieved with the aim to find exactly three clusters
within the data; one could even argue to further subdivide themedium clus-
ter into two if four degrees of prominence were to be found. To compensate
for possible effects due to final lengthening22, the same cluster analysis has

20I implemented an agglomerative hierarchical clustering approach using Ward’s minimum
variancemethod (Ward Jr, 1963) as the linkage criterion whichminimizes the total within-
cluster variance. This seemed to be the most appropriate method for my needs.

21The category labels are, of course arbitrary; linguistic equivalents could, e.g., be “unac-
cented”, “medium accent”, and “strong accent”.

22Final lengthening is the linguistic term for the effect that a speaker unconsciously extends
the final syllable of a sentence or a phrase in length to mark a textual boundary (Beckman
and Edwards, 1990).
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been performed for all syllables except of the final ones in each utterance.
The differences between these two histograms, shown in the undermost plot,
reveal that the final syllables are substantially given low prominence.
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Figure 3.17.: Histograms and hierarchical clustering results of annotated Emo-DB promi-

nence values. Top: all syllables; clusters indicated by colors (white = low

prominence, gray = medium prominence, black = high prominence). Mid-

dle: All syllables but the �nal syllable of each utterance; colors as above.

Below: di�erence between both histograms.

When looking at Fig. 3.17, we realize that the clustering algorithm surpris-
ingly assignsmore than (the upper) half of the scale to the category of highest
prominence. This, however, reflects the natural behavior of the speakers. To
illustrate this, let’s take a look at the distribution of labeled prominence val-
ues per syllable for a specific sentence from Emo-DB, subsuming data from
all speakers and emotions (Fig. 3.18). This sentence comprises 8 syllables,
the second and the second last clearly being strongly accentuated. However,
depending on speaking style and acted emotion type, their values vary in the
range of [15..30], without losing their salient nature.

Prominence in the Context of Speech Rhythm

At this point, we should recall that the prosodic variable prominence is, to-
gether with duration, merely an intermediate on our way to create a rhyth-
mic pattern for an utterance23. Since rhythm as such is already a complex
matter, I have decided to keep it as simple as possible by only differentiating
23There is, in fact, one single rhythmic parameter which relies on estimated prominence val-

ues directly (prominence dynamics,→ 4.3.5). All others describe properties of a previously
calculated rhythmic pattern (→ 4.3.1).
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Figure 3.18.: Labelled prominence values from Emo-DB for the sentence �Der Lappen

liegt auf dem Eisschrank�, shown as Box-Whisker plots: the bold line shows

the median, the box represents the range between the 25% and the 75%

quartile, and the whiskers indicate the complete range of the data without

outliers.

betweenprominent andnon-prominent syllables, which reduces thenumber
of prominence categories to two. This is a classification task which requires
a certain value to be defined as the split point between the two prominence
classes. The histograms in Fig. 3.17 as well as the syllable prominence dis-
tribution plots for the single Emo-DB sentences (which are all depicted in
section A.1 in the appendix) provide evidence that a value of 12.5 would be
a suitable threshold value for this purpose.

So, we would like to create a model for prominence prediction based on
loudness, pitch, and syllable length information. We will use multiple linear
regression to estimate a set of regression coefficients,

{
β1, . . . , βp

}
, which

constitute this model, and we will determine the prediction accuracy of this
model by comparing predicted to actual prominence values. Since we are
notmainly interested in the exact value which has been predicted, but rather
if the correct category has been chosen – namely, “prominent” or “non-
prominent” –, each prominence value in the range of [0..30] is assigned a
class probability. This probability takes values between 0 and 1 and linearly
levels off when approaching the split point, as shown in Fig. 3.19.

Why are we doing this? If we made a binary assignment of “prominent” or
“non-prominent”, any misclassification would lead to equal high error val-
ues. A prediction of 12 (⇒ C1) when the annotator noted 13 (⇒ C2) would
be judged identically as a prediction of 28 when the annotator noted 3. The
fuzzy approach introduces a region of uncertainty in the range of [10..15], ac-
counting for the fact that deviations in this area fall below the JND for fluent
speech.
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Figure 3.19.: Prominence values histogram and assigned class probabilities for �non-

prominent� (C1) and �prominent� (C2) values.

Absolute or Normalized Values?

A closer look at labeled prominence values for an arbitrary sentence from the
Emo-DB database reveals that the available spectrum of prominence values
is not fully exploited inmost cases. This seems to be reasonable if we assume
that a speaker will usually not make use of his or her full range of tones and
loudnesses during one and the same utterance. On the other hand, we may
hypothesize that it is the relative prominence of a syllable compared to the
restwhichmakes it accentuated or not. This last hypothesis demands for nor-
malization of all prominence values within an utterance to the full range:

Pnor m =
30 · (P −min(P ))

max(P ) . (3.5.16)

In this case, also the predictor variables will have to be normalized in a simi-
lar way (without the factor of 30) for regression analysis. I will consider both
possibilities and evaluate if one method is superior to the other or not.

3.5.2. Syllable Pitch

Before discussing how the optimum regression coefficients for loudness,
pitch, and perceived syllable length can be found, we should give some
thought to the way we can assign values from continuous variables — as
loudness and pitch are — to a syllable. For loudness, it seems reasonable
to simply calculate the average over the syllable duration, but it is highly
questionable if this is also valid for pitch.

I agreement with other authors (Clark, 1999), I hypothesize that, if the pitch
contour shows apeakor valley during a syllable, thepitch value at this turning
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pointwill be perceptuallymost important. If the pitch contour doesn’t showa
turning point during that syllable, its perceived pitch can be estimated by cal-
culating the average pitch between the syllable boundaries. In mathematical
terms,

ps yl =

{
fmel [nt p ] if turning points detected
1
L

∑
t fmel [n] otherwise

. (3.5.17)

In the formula above, fmel [n] is the discrete-time pitch contour, and nt p de-
notes the time index of the turning point.

We thus need an analysis algorithm which is able to detect if an arbitrary ex-
traction of the continuous pitch contour contains a distinctive turning point,
meaning that an audible change in pitch direction occurs. One could intu-
itively think of fitting first- and second-order polynomials to the pitch con-
tour extractions and to calculate themean squared error as ameasure for the
goodness-of-fit (GoF). If the parabola showed the better GoF compared to the
straight line, one could argue that this extraction of the frequency contour is
“rather parabola-like” and thus might show a distinctive turning point. This
approach will, unfortunately, not work in this case due to the fact that the
stylized pitch contour has itself been created based on second-order polyno-
mials, such that an algorithmwould always prefer second-order to first-order
fits.

After some guesswork, I finally found a robust classification procedure which
works subject to the following two criteria which must be fulfilled to classify
a pitch contour extraction as having a turning point :

I Theextractionmust have anextremevalue (minimumormaximum) in-
side a certain temporal margin around the syllable center. This margin
is defined using Eq. 3.5.18.

I If an extreme value lies within the margin, it must also be sufficiently
distinctive. This is tested by calculating the differences to both the first
and the last pitch value of the extraction and comparing the normalized
distance to a threshold value (Eq. 3.5.19).

To fulfill the first criterion, the relative frame index of the extreme valuemust
lie within the margin

m(L) =
[

L

2 − (α ·
L

2 ) ..
L

2 + (α ·
L

2 )
]
, (3.5.18)

where L is the length of the syllable in frames and α is a scaling factor, which
has experimentally found to be optimal as 0.6, such that the margin covers
60% of the syllable duration.
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The second criterion is fulfilled if the inequality

min
(��fmel [1] − fmel [nt p ]

�� , ��fmel [L] − fmel [nt p ]
��)

max(fmel ) −min(fmel )
≥ β (3.5.19)

holds. Again, L is the length of the syllable in frames; fmel [nt p ] is the extreme
value under test and β is a threshold value experimentally set to 0.2. This
means that the difference must exceed 20% of the total dynamics of the syl-
lable’s pitch contour.

The working principle of the algorithm is visually summarized in Fig. 3.20,
where the dashed, vertical lines represent the temporal margin and the dot-
ted, horizontal lines mark the distance between the extreme value and the
“closest” first/last value.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Relative Time (sec) →

(a) Minimum within margin and sufficiently
distinctive.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Relative Time (sec) →

(b) Both minimum and maximum outside
margin.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Relative Time (sec) →

(c) Maximum outside margin, turning point
not distinctive.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Relative Time (sec) →

(d) Minimum within margin and sufficiently
distinctive.

Figure 3.20.: Working principle of the turning point detection algorithm.

3.5.3. Retrieving Optimum Regression Coe�cients

Recalling that we have defined prominence as the extent to which a syllable
perceptually "stands out" of its environment, it seems reasonable to not only
include the absolute values of the three auditive variables for each syllable in
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our regression analysis, but also their differences andquotientswith regard to
their surrounding syllables. So, if we regard any of the three auditive variables
as our predictor variable y , we can define four additional predictors for each
of them:

y∆,l ≡
[
0, y (2) − y (1), y (3) − y (2), . . . , y (n) − y (n − 1)

]
(3.5.20)

y∆,r ≡
[

y (1) − y (2), y (2) − y (3), . . . , y (n − 1) − y (n), 0
]

(3.5.21)

y÷,l ≡
[
1, y (2)

y (1),
y (3)
y (2), . . . ,

y (n)
y (n−1)

]
(3.5.22)

y÷,r ≡
[

y (1)
y (2),

y (2)
y (3), . . . ,

y (n−1)
y (n) , 1

]
. (3.5.23)

Doing so, we have determined the number of potential predictors, p, to 15.
Depending on the number of syllables in the utterance, n, the set of lin-
ear equations formulated in Eq. 3.5.15 will in most cases either describe an
overdetermined or an underdetermined system. In an overdetermined sys-
tem, there are more equations than unknowns (n > p). Provided that there
are no (or not enough) linear dependencies between the equations, such a
systemhasno exact solution. In anunderdeterminedsystem, there are fewer
equations than unknowns (n < p), and it has either no solution or infinitely
many solutions. The good news is that, in both cases, an approximate solu-
tion can be found using the ordinary least squares method; and in the case
of an underdetermined system, this is the only relevant solution. The regres-
sionmodel is fitted to the labeled prominence values byminimizing the sum
of squared differences between the labeled values and their corresponding
modeled values.

This results in a closed-form expression24 for the estimated values of the un-
known parameters βp :

β̂ =
(
XTX

)−1
XT y =

(∑
xix

T
i

)−1 (∑
xi yi

)
(3.5.24)

For both absolute and normalized variables, a full-factorial regression analy-
sis has been performed. This means that optimum regression coefficients β
were calculated for all possible parameter sets emerging from the 15 predic-
tor variables (N = 215 − 1 = 32767) both for each speaker individually (local
models) and over all speakers (global models). The expected results are:

I A set of relevant regressors. Which perceptual quantities contribute
most to prominence perception? Are these regressors the same for all
speakers, or are there individual differences?

24A closed-form expression is an expression which can be evaluated in a finite number of op-
erations.
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I Amodel forprominenceprediction. Wewant tobeable topredict sylla-
ble prominences in spontaneous speech, and thuswe need the relevant
regressors and their corresponding coefficients

{
β1, . . . , βp

}
.

I Effects of normalization. Will normalized auditive parameter values
(in the range [0..1]) predict normalized prominence values (using the
full scale from [0..30]) better than their absolute counterparts?

I The generalization loss. To which extent are speaker-specific promi-
nence models more accurate than a global model?

As a measure of model accuracy, both the predicted and the actual promi-
nence values are translated into their corresponding class probabilities for
the classesC1 andC2. Using the following notations

p(ŷ = C1) probability of predicted PV belonging toC1

p(y = C1) probability of actual PV belonging toC1

p(ŷ = C2) probability of predicted PV belonging toC2

p(y = C2) probability of actual PV belonging toC2

(where PV is short for “prominence values”, of course), we can calculate the
product p(ŷ = C1) · p(y = C1) as the “hit rate” for the assumption that the
PV belong to C1, and we can do this similarly for C2. This is equivalent to the
calculation of the inner product when thinking of p(ŷ = C1) and p(y = C1) as
vectors. A meaningful score for the accuracy of prominence class prediction
can now be calculated by normalizing the sum of the inner products for both
classes by the number of syllables in the utterance:

Scor e =
〈p(ŷ = C1), p(y = C1)〉 + 〈p(ŷ = C2), p(y = C2)〉

n
· 100% . (3.5.25)

Tab. 3.2 lists the achievable scores and the corresponding number of regres-
sors used in the best-performing model for single speakers as well as for the
“global set” of all 10 speakers fromEmo-DB. Details on the selected regressors
for each of these models are listed in appendix A.1.

Two aspects are striking about the results in Tab. 3.2:

1. There seem to be large differences in speaking style between different
speakers. While only 2 featured predictors are sufficient to predict sylla-
ble accentuation with an accuracy of 80% for speaker 5, it takes 10 pre-
dictors to achieve the best result for speaker 8 which, in comparison, is
even not just as good.

82



3.5. Prominence

Speaker
Absolute Values Relative Values

Score No. Reg. Score No. Reg.

1 86.64% 7 85.98% 9

2 84.98% 8 85.88% 10

3 82.04% 6 85.02% 11

4 87.51% 9 91.18% 13

5 80.86% 2 81.08% 8

6 92.99% 11 100.00% 15

7 87.72% 9 84.17% 11

8 77.91% 10 75.48% 8

9 83.49% 5 82.45% 10

10 82.21% 10 76.55% 8

ALL 79.02% 5 75.55% 11

Table 3.2.: Best-performing sets of regressors for prominence prediction, both for individ-

ual speakers and globally.

2. For one half of the speakers, relative values word better than absolute
values; for the other half, the opposite is true. Overall, absolute predic-
tor values show a better performance than relative predictor values.

Before selecting the top-performing set of absolute predictors as the winner,
let’s have a closer look at the lower ranks to get an idea of how relevant the
addition or the removal of single predictors might be. Tab. 3.3 lists the “top
ten” scores out of all possible 32767 combinations and the corresponding sets
of predictors. What we see is that some predictors appear very consistently
throughout all sets, while others just pop up here and there. To arrive at a
robust set of regressors, I have decided tomake amajority decision amongst
these ten sets, resulting in the following 5 regressors plus a linear offset:

Regressor Coefficient β̂p Notation

(offset) 5.789759 c0

P∆,l 0.024277 c1

L∆,r 0.162531 c2

L÷,l 0.619543 c3

D 14.664055 c4

D÷,r -0.739814 c5
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Syllable prominence will thus be calculated using this formula:

Pr = c0 + c1 · P∆,l + c2 · L∆,r + c3 · L÷,l + c4 · D + c5 · D÷,r . (3.5.26)

Score
Regressors in 10 best-performing Global Models

Pitch Loudness Duration

- ∆l ∆r ÷l ÷r - ∆l ∆r ÷l ÷r - ∆l ∆r ÷l ÷r

78.94% 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1

78.92% 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1

78.92% 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1

78.90% 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1

78.87% 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1

78.84% 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1

78.81% 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1

78.80% 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1

78.80% 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0

Table 3.3.: Ten best-performing global sets of regressors for prominence prediction using

absolute values.

Summarizing, we can state that absolute values of the auditive variables in
general allow for better prediction of syllable prominence than relative val-
ues. A global regressionmodel has been foundwhichmakes use of 5 auditive
variables of which 4 are differences and quotients with respect to previous or
following syllables, which confirms the assumption that prominence is syn-
onymous with the relative salience of a syllable. The values of the regression
coefficients β̂p allownoconclusionson the importanceof the single variables,
since their ranges are completely different. The idea toperformamajority de-
cision amongst the best 10 sets of predictors proved to be reasonable, since
each of these ten sets contains at least one dispensable parameterwhich does
not affect regression accuracy when being omitted.

Evaluation of Results

Yoon (2010) evaluated inter-speaker consistency on the presence or absence
of pitch accent in a dataset of radio speakers reading the same texts. Ana-
lyzing ToBI -annotated labels25, he found an average consistency of 79.8% for
25ToBI, short for Tones and Break Indices, is a standard for prosody labeling (Beckmann and

Ayers-Elam, 1997).
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“accented” vs. “non-accented” syllables over 3 female and 2 male speakers.
This seems to be a good benchmark for the achievable accuracy of a “global”,
i.e., non-speaker-specific model.

Al Moubayed et al. (2010) built prominence models for Swedish where the
prominence levels of whole words rather than single syllables were to be esti-
mated. Introducing their own interpretationof fuzzynesswitha “maybe” class
in-between “yes” and “no”, their best result for word prominence classifica-
tionwas about 69% correctly classifiedwords for one single speaker. Interest-
ingly, they report that the inter-annotator agreement between 4 persons was
just about 69.2% as well.

The mentioned automatic prominence detector by Tamburini and Wagner
(2007) uses the duration of syllable nuclei (in addition to intensity, pitch
movements and spectral emphasis) as one of several features, which had
been determined manually in advance. Though not being “fully” automatic
for this reason, the approach is certainly comparable to what I have pre-
sented in the previous paragraphs; the authors report a prediction accuracy
of ρ = 0.71 using Spearman’s rho as a measure26.

In this context, the achieved speaker-independent regression accuracy of
79% can be viewed quite as a strong result.

26Spearman’s rho describes how well a relationship between two variables can be described
with a(ny) monotonic function; this function does not have to be linear.
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Paralinguistic Parameters

This chapter describes how descriptive scalar parameters are derived from the

prosodic variables. The selection of parameters is linguistically or musically moti-

vated. 27 melodic, rhythmic and paralinguistic parameters are described in detail.

A complete list of prosodic and paralinguistic parameters can be found at the end

of this chapter.

4.1. General Considerations

4.1.1. How �Free� is Free Speech?

Accentuation and Timing

Whether reading out a written sentence or speaking using our own words,
the rhythmic structure is – up to a certain degree – determined by the used
words and their corresponding pronunciation rules. It is thus important to
understand that the speaker has limited degrees of freedom regarding both
accentuation and timing of the syllables. As we want to find descriptive pa-
rameters of speech rhythm which eventually allow to discriminate not only
between single speakers, but even between emotional states or stress levels,
we should be aware of the remaining “degrees of freedom” a speaker has left
when the words are given.

To get an idea of how similar (or not) syllable accentuation and timing can
be when various speakers produce a given sequence of words, these two pa-
rameters are visualized in Fig. 4.1 for ten different speakers1. The positions
(x-direction) of the black bars indicate the perceptual centers of the syllables,
1The sentence used reads Ich will das eben wegbringen und dannmit Karl was trinken gehen
in “angry” emotion from the Emo-DB database.
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while the bar heights represent the perceived prominences as labeled by a
human annotator. In this figure, the time scale has been normalized for each
speaker individually, such that the first and the last accentuated syllable oc-
cur at the same time instance. This was done to illustrate how the speakers
distribute the syllables in time: when regarding the first prominent syllable as
the rhythmic starting point (or themetric onset, cp. 4.3.1) and the last promi-
nent syllable as the “rhythmic target”, differences in syllable timing are most
obvious with respect to these anchor points.

1
2

3
4

5
6

7
8

9
10

Ich will das e− ben weg− bring− en und dann mit Karl was trin− ken gehn

Time (scaled) →

Figure 4.1.: Comparison of syllable accentuation and timing: perceptual centers (x-axis)

and perceived prominences (y-axis) for the same sentence realized by 10 dif-

ferent speakers. Time axis normalized.

Looking at Fig. 4.1, we notice two things:

1. The perceived prominences of single syllables show only little variance
across speakers. Although there are differences in absolute values, the
proportions of consecutive syllable prominences are the same over
all speakers. (Thus the third syllable, for example, is remarkably less
prominent than its surrounding neighbors, syllables no. 2 and 4; which
is true for speaker 6 aswell as for all the others.) Indeed, it seems that the
spoken content verymuch prescribes howmuch prominence a syllable
is to be given by the speaker.

2. In contrast, syllable times vary considerably across speakers. This sug-
gests a quite high degree of freedom in timing, which, in fact, accords

88



4.1. General Considerations

with our everyday speaking experience. Note that speaking tempo is ig-
nored in Fig. 4.1 due to the normalized time axis.

Evidence for Isochrony?

The idea of isochrony on the syllable level is a basic principle in speech
rhythmresearchandconstitutes thedivisionof languages into syllable-timed,
stress-timed and mora-timed languages. In a strict sense, it is the postulate
that all syllables of an utterance are distributed evenly in time. Despite the
fact that, to date, no research has been published which shows any evidence
for strict isochrony in whatever language, there are many signs that it exists
on an impressionistic or perceptual level (Wagner, 2008).

This sentence above, freely translated, means: I’ll just bring that away and
then go for a drink with Karl, which are obviously two concatenated clauses.
In both of these clauses, the prominent syllables appear quite regularly in
groups of three; independently of the pause length before the word and. This
might support the hypothesis that speakers tend to produce logical sub-units
of a longer utterance in a rhythmically uniform way.

What is indeed observable in Fig. 4.1 is a phenomenon which linguists call
compensatory shortening : the more non-prominent syllables are to be pro-
nounced between two prominent syllables, the more the speaker tends to
“compress” those non-prominent syllables in time in order to keep up the
isochrony (Pike, 1945).

4.1.2. Temporal Aspects

The acoustic variables are calculated from the recorded speech files in tem-
poral steps of 10 milliseconds, independent of the respective analysis win-
dow lengths (which are variable-specific for different reasons and may, e.g.,
depend on theminimum frequency for pitch tracking). We are thus provided
with 100 values per second, which would mean an extreme overload for our
sensory system if all this information was processed without perceptual pre-
filtering. Instead, the melodic and rhythmic impression of an utterance is
created using the information from certain “anchor points” in the continu-
ous speech signal flow.

Althougha fundamental frequency is only apparent in vowels andvoicedcon-
sonants, we perceive a continuous “melody” over the whole utterance, with
the exception of intended speech pauses (→ 3.3.2). Depending on the nature
of themelodic parameter to be extracted, the perceptuallymeaningful points
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4. Deriving Prosodic and Paralinguistic Parameters

are either local extrema of the curve (as used, e.g., for declination and peak
shape), or one-per-syllable (in the case of utterance harmony).

For the rhythmic aspects of speech, these anchor points are the perceptual
centers of the single syllables (→3.4). So, in the context of rhythm, the syllable
is reduced to an event which is a point in time and has no length; its duration
indeed contributes to its perceived prominence, but its temporal location is
determined by its perceptual center.
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4.2. Melodic Parameters

4.2. Melodic Parameters

Themelodicparameters presented in this sectionare scalar, linguistically and
musically-motivated descriptors of speech characteristics which are calcu-
lated based on the continuous pitch contour (→ 3.3.2). Depending on the
nature of the melodic parameter to be extracted, the perceptually meaning-
ful points are either local extrema of this contour, or one-per-syllable.

4.2.1. Declination

In natural speech, most people tend to start speaking with a moderate pitch,
which is then gradually lowered during the sentence. This phenomenon was
first reported by Pike (1945). Although not indisputable amongst intonation
researchers, the declination of an utterance can be measured as a prosodic
property. Declination may also occur counter-intuitively, meaning that the
fundamental frequency shows a positive trend2. To avoid ambiguities, in this
thesis, positive declination values indicate a gradually rising pitch, while neg-
ative declination values represent a falling trend.

In the literature, the amount of declination is commonly estimated by fitting
a straight line either through the local maxima (topline) or the local minima
(baseline) of the pitch contour and calculating the angle of this linear regres-
sion line. As shown in the upper part of Fig. 4.2, these lines are not necessarily
parallel, which suggests the calculation of an average declination value as a
descriptive parameter:

declinat ion =
]t opline + ]baseline

2 . (4.2.1)

Based on the calculated declination value, the pitch contour is further de-
trended by subtracting a (rising or falling) ramp with corresponding angle
from the original pitch contour and subsequently centered around zero by
subtracting the mean, resulting in some kind of “normalized” pitch contour.
As visible from the lower part of Fig. 4.2, the first-order fits through both lo-
cal maxima and minima are perfectly parallel to each other. It is intuitive, in
my opinion, to consider this de-trended pitch contour as a suitable basis for
other level and range-based parameters (see also the work of Patterson and
Ladd (1999)).

2This was, amongst others, shown by Paeschke and Sendlmeier (2000) using the Emo-DB
corpus.
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Figure 4.2.: Calculation of declination. Above: continuous pitch contour, local maxima

(dark grey) and minima (light grey) with corresponding least-squares �ts.

Below: de-trended pitch contour centered around zero, local maxima (dark

grey) and minima (light grey) with corresponding least-squares �ts.

4.2.2. Pitch Onset

Pitch onset refers to the first “tone” of an utterance and is considered a gen-
eral characteristic of a speaker, whichmeans that it is believed to be virtually
constant for individual speakers (Kehrein, 2002). Some studies even calculate
declination as the difference of onset and final low (which is the last “tone”
of that utterance)3.

In any case, pitch onset is a characteristic prosodic property which I will cal-
culate in three different ways:

1. Absolute Pitch Onset, which is the value of the first voiced frame in the
continuous pitch contour, to test the hypothesis that pitch onset is con-
stant, i.e., independent of the emotional state or stress level.

2. Pitch onset with respect to Level, which is a measure of howmuch the
onset pitch value exceeds or falls below the average pitch value; given as
the first voiced frame in the de-trended and normalized pitch contour.

3. Pitch onsetwith respect to Final Low, because both onset and final low
are considered the “melodic anchor points” in a coherent linguistic ex-
pression, independent of declination as a general melodic trend.

3However, the example shown in Fig. 4.2 already suggests that this might be not an appro-
priatemethod; onset and final low are rather at the same pitch, although the pitch contour
shows a clear positive slope.
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4.2. Melodic Parameters

4.2.3. Pitch Span

Rather than just calculating the standard deviation of all pitch values in anut-
terance, Patterson and Ladd (1999) proposed to calculate pitch range based
on peaks and valleys in the pitch contour (→ 1.4.3, Fig. 4.4). Following their
approach, the pitch span of an utterance is calculated as the difference of
the average peak height and the average valley depth in the de-trended and
normalized pitch contour (indicated by the dashed lines in Fig. 4.3). Doing
so, I assume that a human listener implicitly considers the declination phe-
nomenon when assessing the variation in pitch over an utterance.
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Figure 4.3.: Calculation of pitch span from the de-trended pitch contour. Shown are the

local maxima (dark grey) and minima (light grey) as well as their average

values (dashed lines).

I decided to call this parameter “span” rather than “range” to indicate that
its calculation is somewhat different from the common linguistic pitch range
measures. By using the average over all peaks and valleys, respectively, I do
not favor one peak over another or claim linguistic boundary conditions to
be fulfilled, as, e.g., a falling pitch trend over the utterance.

Figure 4.4.: Calculation of pitch range after Patterson and Ladd (1999).
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4.2.4. Normalized Pitch Peak Extent

High dynamics in pitch are associated with expressiveness and— thought in
an emotional context — also with arousal. While pitch span is a measure for
the average range of pitch values during the utterance, the normalized pitch
peak extent describes how much the highest pitch accent stands out of its
environment. If you have a background in electric engineering, you might
draw a parallel between this measure an the crest factor of a signal, which is
the ratio of its peak value to its RMS value.

For the sake of simplicity, the normalized pitch peak extent is calculated from
the de-trended and normalized pitch contour by determining the value of its
highest peak, as shown in Fig. 4.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (sec)

-6

-4

-2

0

2

4

6

P
itc

h 
(s

em
ito

ne
s)

Pitch Contour, detrended

Normalized
Pitch Peak Extent

Figure 4.5.: Calculation of normalized pitch peak extent from the de-trended pitch

contour.

4.2.5. Local Peak Dynamics

Another indicator of “dynamics” in the pitch contour are the absolute gradi-
ents between successive peaks and valleys, calculated as

pe ak dy n . =
1

N − 1

N∑
i=2

| fmel [PVi ] − fmel [PVi−1] |
PVi − PVi−1

(4.2.2)

where PVi is the time index of the i-th peak or valley. While pitch span and
normalized pitch peak extent both characterize the range of values, we now
also get an idea of the temporal aspects of the pitch movements using this
measure.
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4.2.6. Peak Timing and Peak Shape Ratios

Niebuhr (2007) studied the effects of different peak contour shapes on the
meaning of an utterance by comparing peak rise and peak fall times in a cate-
gorical way (slow vs. fast). Localmaxima in the pitch contourwere compared
with the vowel onset of an accentuated syllable and categorized as being ei-
ther early,medial, or late. To do so, pitch and energy contours of single vowels
were extracted manually and were compared to each other in the context of
that very syllable. Examples for early, medial and late f0 peaks are shown in
Fig. 4.6: the solid vertical lines mark the boundaries of the syllable /ma:/,
while the dotted line in-between marks the increase in intensity at the be-
ginning of the syllable nucleus. Note that the peak in fundamental frequency
occursmainly before, during, and after the accentuated syllable, respectively,
in these three examples.

Figure 4.6.: Peak timing study by Niebuhr (2007): PCM audio, intensity and f0 contours,

and spectrogram (top to bottom) for three realizations of the utterance Eine

Malerin (�a painter�).

The hypothesis that pitch peak timing is a way of expressing the speaker’s
opinionon the spokencontent is supportedbyotherGerman linguists (Kohler,
2005). They claim that early peaks coincide with known or accepted informa-
tion, while late peaks signal that the speaker disagrees with the subject of
debate.
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4. Deriving Prosodic and Paralinguistic Parameters

Following Niebuhr’s approach, we can parametrize pitch and energy timing
by comparing pitch peak times to those of the “closest highest” peaks in the
loudness contour. The latter is a smoothed form of the measured short-term
loudness track, which has been pre-processed in a similar way as the pitch
track (→ 3.3.2). These peak timing differences are captured in terms of aver-
age and dynamics which are each calculated as follows:

PT Dav g =
1
N

N∑
i=1

tP_pe ak − tL_pe ak (4.2.3)

PT Ddy n =
PT Dst d

PT Dav g
(4.2.4)

where

PT Dst d =

√√√
1

N − 1

N−1∑
i=1

(
PT Di − PT Dav g

)2
.

What is crucial for the correct calculation of these parameters is the selec-
tion of the “appropriate” energy peak which belongs to the syllable nucleus.
Due to the smooth course of the loudness contour, this works in a satisfactory
manner4, as also visible from Fig. 4.7.
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Figure 4.7.: Calculation of peak timing di�erences: pitch (above) and loudness (below)

contours (above) and with their respective local maxima. Peaks taken for

time di�erence calculations have dark gray markers.

With regard to the question how “free” is free speech? (→ 4.1.1), I think we
can state that peak timing is definitely one of the freedoms a speaker has still
available, regardless of pronunciation and accentuation rules.
4The energy peak selection performance has been checked in random samples; I have found
no questionable allocation of energy peaks to pitch peaks.
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Niebuhr also discovered that an early peak corresponds to a fast rise and a
slow fall of the pitch contour around that peak, while a medial peak shows
approximately equal rise and fall times, and a late peak is characterized by
a slow rise and a fast fall. To account for this relationship, another pair of
parameters is calculated in terms of average and dynamics of the peak shape
ratios in the pitch contour which are given by the ratio of the respective rise
and fall times:

P SR =
tpe ak − tv alle y,be f or e

tv alle y,a f t er − tpe ak
. (4.2.5)

This approach is visualized in Fig. 4.8.
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Figure 4.8.: Calculation of peak shape ratios: continuous pitch contour, local maxima

(dark gray) and minima (light gray), corresponding peak shape ratios.

Byanalogywithpeak timingdifferences, average anddynamics are calculated
as scalar parameters

P SRav g =
1
N

N∑
i=1

P SRi and P SRdy n =
P SRst d

P SRav g
. (4.2.6)

4.2.7. Utterance Harmony

At this point, we leave the background of classic phonology and enter the
musical world, as I will describe my approach to capture the harmonic im-
pression of an utterance. As already mentioned, the human voice is indeed
a monophonic instrument and is usually not able to produce several tones
at once; but nevertheless, one can still get a harmonic impression from suc-
cessive tones produced within short periods of time. Duringmy work on this
thesis, I had to notice that, in the meantime, a similar idea had already been
published by Yang and Lugger (2010). However, although the basic approach
to arrive at amusical descriptionof the relationship of tones in anutterance is
similar5, there are a few remarkable differences in the selection of the sounds
which contribute to a harmonic impression.
5Mapping a frequency spectrum to a pitch class histogram is anyway a common technique
in the field ofmusic information retrieval and not a novel contribution by Yang and Lugger.
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In musical terms, harmony is the interplay of musical tones, which are — in
the Western world — restricted to 12 different tone qualities (C, C], D, D], E,
F, F], G, G] A, A], B)6. So, the first task is to find out which tones are available
in the sound we are about to analyze. This is commonly done by creating a
so-called pitch class histogram which maps different frequencies belonging
to the same pitch class (which is just a technical term for “musical tone”) into
one category; for example, an A for pitch values around 55Hz, 110Hz, 220Hz,
440Hz, et cetera. Yang and Lugger (2010) create such a histogram over the
whole utterance, which obviously introduces a lot of noise due to the contin-
uous nature of speech melody. As opposed to their approach, I use only the
previously determined syllable pitch values (→ 3.5.2)7 for harmony calcula-
tion, which are furthermore weighted with their corresponding prominence
values before constructing the histogram.

Given an f0 value, the corresponding pitch class can be determined in a
straightforward way by calculating its corresponding MIDI pitch index,

pM I DI = round
(
12 · log2

f0
440

)
+ 69 , (4.2.7)

which is defined in such a way that all pM I DI belonging to pitch class C are
integer multiples of 12. Starting with C, every pitch class is thus assigned an
index using the modulo function:

PC = (pM I DI mod 12) + 1 . (4.2.8)

C C# D D# E F F# G G# A A# B
0

0.2

0.4

0.6

0.8

1

Figure 4.9.: Calculation of utterance harmony: weighted pitch class histogram for a sen-

tence from the Emo-DB database.

The histogram is then created by adding the prominence value of each sylla-
ble to the corresponding dimension of a 12-dimensional vector which is sub-
sequently normalized such that its maximum value equals one, as shown in
Fig. 4.9.
6Without the context of a home key, we can assume enharmonic equivalence (E[ = D]).
7Note that, in this case, non-modified f0 values are taken which are then translated intomu-
sical pitch; however, the determination of the perceived fundamental frequency of each
syllable is following what has been described in section 3.5.2.
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In order to determine themost likely chordwhich is composed of these tones,
the pitch class histogram is correlated with a set of binary chord templates.
As shown in Fig. 4.10, this set comprises 12major and 12minor triads as well
as 3 diminished tetrachords and 4 augmented triads.

Chord Templates

MAJOR MINOR DIM. AUGM.

B

A#

A

G#

G

F#

F

E

D#

D

C#

C

Figure 4.10.: Chord templates for harmony estimation: 12 major chords, 12 minor chords,

3 diminished chords, 4 augmented chords (from left to right).

Mathematically, the degree of correlation can be easily determined using a
matrix multiplication,

cor r = CTh , (4.2.9)

where h is a column vector containing the normalized pitch class histogram,
andCT is the transposedmatrix visualized inFig. 4.10which is 1where ablack
square is shown, and 0 otherwise. The result, depicted in Fig. 4.11, shows the
highest correlation for F] minor, which perfectly fits to the threemost promi-
nent pitch classes in the histogram (C] - F] - A).

MAJOR MINOR DIM. AUGM.

Figure 4.11.: Correlation with chord templates: 12 major chords, 12 minor chords, 3

diminished chords, 4 augmented chords (from left to right).

Two parameters are derived from the chord with the highest correlation;
namely chord identity and mode, where the latter can be major, minor,
diminished or augmented.
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4.3. Rhythmic Parameters

The comprehension andmeasurement of speech rhythm is a central concern
among linguists. However, it turned out that popular measures based on the
percentage and the standard deviation of “vocalic” and “consonantic” time
intervals (Ramus et al. (1999): %V , ∆V , and ∆C ; Grabe and Low (2002): PVI )
primarily allow to distinguish between inherent rhythmic characteristics of
different languages. As illustrated in Fig. 4.12, the stress-timed languages En-
glish and Dutch form a cluster in the upper left which is well separated from
the syllable-timed languages cluster including Spanish, Italian, and French8,
while Japanese, as deputy for the mora-timed languages, is located far away
from both clusters in the lower right of the %V /∆C plane.

Figure 4.12.: Languages in the %V /∆C plane (from Ramus et al. (1999)).

Despite several interesting approaches to describe rhythm in speech—many
of them of theoretical nature —, there is to date no common understanding
in the scientific community on which characteristics of speech constitute its
rhythm as the interplay of strong andweak beats grouped in a particular way.
In my opinion, Cummins (2002) gets to the heart of it:

This variability raises the question ofwhether the kind of indexpro-
posed byRamus, Grabe andothers canmeaningfully be said to cap-
ture anything about rhythm in speech. (...) More succinctly, where
is the bomdi-bom-bom in %V?

8Although clearly assignable to one of these two clusters, Polish and Catalan are considered
intermediate languages between syllable-timed and stress-timed languages.
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The rhythmic parameters presented in the following sections are based on a
musical understandingof rhythm. This implies the assumptionof one central
property of musical rhythm which is not necessarily met by natural speech:
the existence of a regular meter.

I will use the term “accentuated syllable” for those syllables which show a
certain degree of relative prominence compared with other syllables in that
utterance, to point out the difference between globally dividing prominence
values into categories, independent of their occurrence in an utterance (→
3.5.3), and judging relative prominence (= “accentuation”) within the scope
of an utterance. As an example, in the topmost graphic in Fig. 4.13 on page
103, the syllable at approx. 0.6s has a prominence of 17.5 which is definitely
“prominent” from a global perspective, but it is shaded by the even more
prominent syllable at 0.5s. Thus, the syllable at 0.5s is considered accentu-
ated, while the syllable at approx. 0.6s is not.

4.3.1. Meter Fitting and Rhythmic Grid Creation

Any kind of rhythm requires the presence of ameter, meaning a continuous
underlyingpulsewithperiodical accents. Transferring this concept to speech,
we implicitly assume that a speaker produces an utterance with an underly-
ing metrical rhythm. Regarding the perceptual centers of the syllables as the
beats of speech rhythm, this means that each syllable is either amultiple or a
fraction of a fixed unit of time. While the assumption of a strictly continuous
pulse on the syllable level might be true for poetry, it is restricted to accen-
tuated syllables in both read prose and spontaneous speech (→ 4.1.1). The
first step towards the creation of a rhythmic grid for an utterance is thus to
estimate its meter; or rather: to fit themost likely regular pulse to the syllable
beat.

Detecting �Accentuated� Syllables

The syllable beat is given by the p-centers of the syllables, of which the ac-
centuated instances constitute the meter. The first challenge is now to find
a threshold value for prominence level which separates “accentuated” from
“non-accentuated” syllables. After some manual testing, it emerged that a
constant threshold value isnot applicable even fordifferent spoken sentences
of the same speaker. The solution is an adaptive threshold which is not only a
function of a syllable’s prominence value, but also of the distance to the sur-
rounding syllables. It is calculated as follows:
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1. Each syllable is representedbya single impulseofheight 1 at its p-center
which is multiplied by its prominence value.

2. This series of impulses is then convolved with a triangular window9, re-
sulting in several overlapping triangles of which the highest values in
each time step form the threshold curve. One could interpret this as
some abstract kind of “prominence masking”.

3. Those scaled impulses which do not fall below the threshold curve (i.e.,
which are not “masked”) are regarded as being accentuated. If more
than 60% of the syllables are marked accentuated, the width of the tri-
angles is increased by a factor of 1.2 and the procedure is repeated from
step 2.

The topmost graphic in Fig. 4.13 displays the syllable p-centers and their
prominences as vertical bars and the threshold curve as a dotted line. Those
syllables which are considered accentuated are marked black. Thinking only
of these accentuated syllables, one could get the impression that there is in-
deed some sort of immanent temporal regularity.

Finding the Most Likely Meter

The temporal differences ∆t between the accentuated syllables will of course
not be perfectly equal or integer multiples of each other. Our goal thus must
be to find a common ∆tq (where the q stands for “quantized”) as a compro-
mise which requires the least quantization effort; that is, which introduces
as little temporal shifts as possible. If we had a continuous, sinusoidal func-
tion, we could make use of its auto-correlation function to find the underly-
ing fundamental period (→ 3.3.1). By playing a simple trick, we can create a
pseudo-sinusoidal function from thepatternof prominence values over time:
by convolving the single impulses with a sinusoidal kernel function of suffi-
cient width, it should be possible to obtain usable results.

The middle graphics in Fig. 4.13 show such a pseudo-sinusoidal signal (left)
and its ACF (right) using a kernel width corresponding to the minimum ∆t

between the accented syllables. As the convolution kernel, several popular
windowing function in digital signal processing may be appropriate; I have
chosen theHann window

wH ann[n] =
1
2

(
1 − cos

(
2πn

N − 1

))
= sin2

( πn

N − 1

)
(4.3.10)

due to its rather basic cosine shape which produces no discontinuities at the
edges.
9An initial width of 500ms has been determined as suitable in many cases.
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Bydetermining the lag of the secondhighest peak, we get the optimum∆tq,opt

with respect to the lowest quantization cost.

Creating the Rhythmic Grid

In order to fit the meter beats to the accentuated syllables best possible, a
regular grid is created, starting from t0 = 0 in steps of ∆tq,opt to a t1 which is
greater or equal to the p-center of the last syllable in the utterance. Subse-
quently, each of the syllables at t = ti is assigned to the closest position ti,q in
the grid, and the overall quantization cost is calculated as

cost (τ) =
N∑

i=1

�� ti − ti,q (τ)
�� · Pi (4.3.11)

where Pi is the prominence of the i-th of N syllables, such that shifting sylla-
bles of high prominence is penalized more than shifting less prominent syl-
lables, and τ0 = 0 is a relative offset which is used in the remaining steps. An
iterative procedure is now started by shifting the grid in steps of 1ms and cal-
culating the quantization cost again in each step, up to τmax = ∆tq,opt . Doing
so, we end up with a series of time shifts and the corresponding quantization
costs. Now it is a trivial task to pick the τopt which leads to the lowest cost.

Next, the locations of the unaccented syllables in-between the quantized, ac-
centuated syllables are analyzed and the best-fittingmicro grid is determined
in a similarmanner as described above: if there are unaccented syllables, five
different ways to subdivide the interval between the accentuated syllables (2,
3, 4, 6, and 8 divisions) are tested by creating the respective micro grid and
calculating the quantization cost. In contrast to above, we are not aiming
at finding an optimum time shift, but the optimum number of subdivisions.
This procedure is performed for every interval between two accentuated syl-
lables individually, accounting for the fact that the number of syllables aswell
as their approximate position are determined by the words to be said, rather
than being chosen freely by the speaker.

The undermost graphic in Fig. 4.13 shows the original syllable positions as
narrow, white bars, and the quantized positions as wide bars. The solid verti-
cal linesmark themeter grid, and the dashed vertical lines indicate themicro
grids.

Threedifferentparameters are calculatedbasedon this rhythmicgrid, namely
meter regularity, tatum feel, and tempo.
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4.3.2. Meter Regularity

Now that we have forced the syllable p-centers (PC) into a regular temporal
grid, we can judge the inherent regularity of the non-quantized rhythmic pat-
tern by formulating a measure based on the quantization cost.

The meter regularity of an utterance is calculated as follows:

R = 1 − 1
N

N∑
i=1

�� ti − ti,q

��
∆tq

. (4.3.12)

Again, ti and ti,q are the times of the i-th syllable p-center before and after
quantization, respectively, andN is the total number of accentuated syllables.
If the pattern had been perfectly regular before quantization, there was no
quantization effort and R would equal 1. The maximum possible shift for a
single syllable is 1

2∆tq , but this will never happen for all accentuated syllables,
because in that case, another optimumtime shift τopt wouldhavebeen found.
Values for R typically range between [0.9..1], the lowest value found in the
Emo-DB database was 0.78.
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Figure 4.14.: Histogram of regularity values from all Emo-DB sentences.

4.3.3. Speech Tempo

In the literature, speech rate is often measured in syllables per second, which
is comprehensible since the syllable is the backbone of speech rhythm in a
linguistic sense. Moreover, since many subjects of analysis require single syl-
lables to be identified either manually or automatically, such a measure can
be calculated in a convenient way.

Although this kind of speech rate reflects a general temporal property and
may indicatewell if speaker Ahas been reading a sentence “faster” or “slower”
compared to speaker B, it does not capture the speed of the pulse in amusical
sense. Rhythm perception experiments are often designed as tapping tasks
where test persons are asked to tap their fingers while listening to different

105



4. Deriving Prosodic and Paralinguistic Parameters

rhythms. I amconvinced that test persons inahypothetical tempoestimation
experiment would use the same technique to capture some kind of “pulse” in
speech.

Having the rhythmic grid available, the calculation of speech tempo in amu-
sical sense (thus a divergent name for this parameter) is as simple as

t e mpo =
60
∆tq

... [bpm] (4.3.13)

where bpm refers to the musical unit of “beats per minute”.

4.3.4. Tatum Feel

Now that we have captured the meter both in its regularity and tempo, we
should have a look on the remaining parts which constitute the rhythm of
speech: the unaccented syllables. By the way they subdivide the interval be-
tween two successivemetric beats, they give character to a rhythm. A regular
meter beat would never be called “swinging” or “syncopated”— it’s all in the
fine structure in-between the meter. In music research, the term tatum has
taken root for the finest temporal unit which is perceived by a listener in the
context of a rhythm; the term has been formed by Bilmes (1993) (who was
searching for a synonym for this kind of temporal atom, by theway, and came
up with “tatum” in honor of the legendary Jazz pianist Art Tatum).

Although pronunciation rules prescribe which syllables are to be given more
prominence than others and thus the number of non-accentuated sylla-
bles between two metric pulses is pre-determined (see discussion in section
4.1.1), the speaker has some degree of freedom in the timing of these syl-
lables. As described above, the micro-rhythmic grid is created by fitting an
evenly distributed number of beats, dividing the temporal space between
twometric pulses into 2, 3, 4, 6, or 8 pieces of same size.

Due to the fact that meter estimation is highly vulnerable tomisdetections in
terms of halved or doubled tempo, it seems reasonable to just make a basic
distinctionbetweenbinary and ternary tatum feel by checking if themajority
of “best fitting” subdivisions is an integer multiple of 2 or of 3.

t at um =

{
′binar y ′ if mode (subdivisions ) ∈ {2, 4, 8}
′t er nar y ′ if mode (subdivisions ) ∈ {3, 6}

. (4.3.14)
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4.3.5. Prominence Dynamics

The parameters discussed up to now mainly consider the aspect of syllable
timing; the dynamics of a rhythm pattern given through the interaction of
more and less accentuated syllables have not yet been covered explicitly.

Intuitively, it seems to make sense to calculate the standard deviation of all
prominence values in an utterance; just as with peak timing differences and
peak shape ratios (→ 4.2.6), this standard deviation is normalized by the av-
erage prominence level:

P D =
σPr om

µPr om
. (4.3.15)

4.3.6. Legatoness

Remember the discussion onwhat constitutes the perceived length of a sylla-
ble in section 3.2.4? Theperceived syllable lengthwill inmost cases be shorter
than the duration between the syllable boundaries (which I will call the full
syllable in this context), because these boundaries normally mark the onset
of a syllable, but not explicitly the end of the previous one.

This has inspired me to calculate the legatoness of a syllable as the ratio of
perceived to full syllable length. It is a measure of “how legato” a syllable has
been uttered, and its value can never exceed 1 by definition. The scalar mea-
sure used for classification is the average legatoness over an utterance,

le g at one ss =
1
N

N∑
i=1

lper ceived

lf ull
, (4.3.16)

with lx denoting syllable length. Typical values of legatoness range from
[0.70..0.85], the lowest and highest values for sentences from Emo-DB are
0.60 and 0.95, respectively.
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Figure 4.15.: Histogram of legatoness values from all Emo-DB sentences.
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4.4. Paralinguistic Parameters

All the speech parameters we got to know so far are descriptors for dynamic
phenomena in speech. Melody and rhythm are inherently dynamic, and
scalar measures for these variables describe some sort of “global trend” over
the utterance. Paralinguistic parameters, on the contrary, are rather static
over the course of an utterance; they capture a general impression of the
speakers’ “voice sound”.

We have learned that the characteristic "tone" of a sound is called timbre and
that this term is hard to define exactly (→ 1.2.1). We have further learned that
voicing characteristics which are associated with glottal oscillation patterns
are summed up under the term voice quality. We will become familiar with
some paralinguistic parameters in the following sections, and we will learn
that they are not necessarily spectral characteristics of speech.

4.4.1. Roughness

Roughness is the impression we get when a musical sound is modulated
in amplitude or frequency in the range of approximately 15Hz to 300Hz.
As a psychoacoustical measure, it is commonly used to estimate the (non-
)pleasantness of sounds or to evaluate the sound quality of “noisy” sounds
as engine noise or the sound of an electric shaver. Roughness is measured
in asper, which is the Latin word for “roughness”. 1 asper is defined as the
roughness produced by a 1kHz tone of 60dB SPL which is 100% amplitude-
modulated with a modulation frequency of 70Hz (Zwicker and Fastl, 1999).
Roughness is thus no spectral feature, although its effect contributes to the
timbre of a sound. It depends on the center frequency of the sound as well as
on the modulation frequency and the modulation index. Experiments have
shown that the just noticeable difference for roughness is about 17% (Daniel
andWeber, 1997).

Several models for roughness estimation have been formulated and further
developedover the years. Themost recent approach, tomyknowledge, is that
from Höldrich and Pflüger (1999) which is based on the calculation of effec-
tive modulation indexes in critical bands. An excellent description of their
roughness calculation has been provided by Sontacchi (1998) which I will try
to summarize in the following10:

10The model is formulated in a very general way with a lot of variable factors. The formulas
in this description already include fixed values. Referring to Höldrich and Pflüger (1999),
they have been like this: t = 2, p = 1, q = 0, and s = 1.
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1. The PCM signal is cut into overlapping frames of 200ms which are each
weighted with a Hanning window.

2. Two auditory filters which imitate the frequency response of the outer
and middle ear are applied.

3. In accordance with earlier models (Aures, 1985; Daniel and Weber,
1993), the pre-filtered signal is fed into a critical-band filterbank with
47 overlapping channels (zi = (0.5 · i )Bark, ∆z = 1Bark), whereby the
contribution of every spectral component to each band is calculated
individually and the threshold in quiet is considered.

4. To determine the effective modulation index of the single bands, their
envelope spectra areweightedwithmodifiedAures curves (Aures, 1985)
as well as two weighting curves which are independent of the carrier
frequency and which have been determined in listening tests, before
being transformedback into the timedomain. Theeffectivemodulation
index mi of the i-th critical band is then obtained by dividing the RMS
value of the weighted envelope by its DC value.

5. The specific roughness in each band is calculated using another, band-
specific weighting function g (zi ) to take the dependency on the carrier
frequency into account:

ri = m 2
i · g (zi ) . (4.4.17)

6. Finally, theoverall roughness value for the current frame is calculatedby
considering the cross-correlationbetweenneighboring critical bands to
avoid overestimation:

R = c ·
47∑

i=1

(
ri · ki, i−2

)
(4.4.18)

where ki, i−2 is the cross-correlation coefficient between the i-th and the
(i−2)-th band, and c is a calibration factor to ensure that the 1kHz/60dB
tone with fmod=70Hz equals 1 asper.

As for peak shape ratios andpeak timing differences (→ 4.2.6), average rough-
ness and roughness dynamics are calculated as scalar parameters from this
time series of roughness values; the latter being defined as themean normal-
ize by the standard deviation.
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4.4.2. Sharpness

Broadly speaking, sharpness describes the proportion of high-frequency con-
tent in a sound mixture. Just as roughness, it is used to describe the sensory
pleasantness of a sound, and just as loudness, it is a ratio quantity in that
sense that one sound can be “twice as sharp” as another. Themain influence
on the sharpness of a sound is its overall spectral envelope, whereas the spec-
tral fine structure play a minor role (Zwicker and Fastl, 1999).

The spectral envelope can be described by the specific loudness pattern over
critical bands (→ 3.2.3). A popular model for sharpness has been formulated
by Zwicker (1982) who uses the weighted first moment of the specific loud-
ness divided by the total loudness:

S = 0.11 ·
∫ 24Bar k

z=0 N ′g (z )z dz∫ 24Bar k

z=0 N ′ dz
(4.4.19)

where

g (z ) =
{
1 for 0 < z ≤ 16Bar k

0.066 · e 0.171z for 16 < z ≤ 24Bar k

and the factor of 0.11 normalizes the sharpness of a narrow-band noise (≤
1Bark) with a center frequency of 1kHz at 60dB SPL to 1 acum, which is the
Latin word for “sharpness”. The shape of the weighting function g (z ) demon-
strates the influence of high frequencies on the impression of sharpness.
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Figure 4.16.: Weighting curve g (z ) for sharpness calculation after Zwicker (1982).

4.4.3. Harmonics-to-Noise Ratio

In section 3.3.1, we have learned that the auto-correlation function of a signal
can be used to find themost prominent frequency in the complex signalmix-
ture by determining the time lag of the second largest peak in the ACF which
is the reciprocal of the fundamental frequency.
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The auto-correlation at τ = 0 is the integral over the signal multiplied with
itself which is equal to the signal’s power. In the same way, one can argue
that the normalized autocorrelation at the second largest peak indicates the
relative power of the harmonic signal component (Boersma, 1993). This is
plausible when looking at Fig. 4.17 which shows three different signals and
their corresponding right-sided autocorrelation functions (ACFs). The ACFs
have been normalized such that the maximum value at τ = 0 equals 1. The
first signal is an extract from an Emo-DB sentence which comprises the sylla-
ble /la/ spoken by a male speaker (upper left). Its corresponding ACF clearly
shows a harmonic structure, and the second largest peak has a value of ap-
prox. 0.32 (upper right). Next, we have a pure sinusoid of equal length which
shows perfect periodicity in the ACF, and its second largest peak (as all the
others) equals 1. Finally, white noise11 has an ACF which shows one single
peak at zero lag and virtually no periodicity at all, so the second largest peak
is very small.
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Figure 4.17.: Di�erent signals (left) and their normalized right-sided auto-correlation func-

tions (right). Top: speech signal excerpt, voiced syllable /la/. Middle: pure

sinusoid with f = 500Hz. Bottom: white noise.

If we denote the normalized auto-correlation function of the signal x(t ) with
r ′x and the lag τ of the largest peak except for the zero lag with τmax , we can—
following Boersma (1993) — write the logarithmic harmonics-to-noise ratio
in dB as

H N R = 10 · log10
r ′x (τmax )

1 − r ′x (τmax )
. (4.4.20)

11White noise is a random signal which is absolutely uncorrelated.
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4.4.4. Voice Quality Measures

The term voice quality is often associated with disordered voice, but is not
necessarily restricted to this pathologic sense. Voice quality generally refers
to voicing characteristics, which are associated with different vibratory pat-
terns of the glottis. Depending on the aperture of the arytenoid cartilages12,
different phonation types are realized (Ladefoged, 1971), as sketched in Fig.
4.18. The most common phonation type is modal which yields maximum
vibration of the vocal cords through an optimal combination of airflow and
glottal tension.

glottal

closure
creaky whispering modal breathy voiceless

Figure 4.18.: Continuum of phonation types from closed to open glottis (after Ladefoged

(1971), pictures taken from (WikimediaCommons, 2005)). The triangles

represent the arytenoid cartilages, the lines connected to these triangles are

the vocal cords.

Voice quality is usually judged by voice therapists using established scales,
e.g., theGermanRBH Index for the assessment of roughness, breathiness and
hoarseness (Nawka, 1987). Thoughbeing rated subjectively, there are correla-
tions with the psychoacoustic parameters roughness and harmonics-to-noise
ratio.

Somevoicequality attributes are commonlyassociatedwithemotional terms,
such as a breathy voice with intimacy, a whispery voice with confidentiality,
or a creaky voice with boredom (Laver, 1980). However, different experi-
mental studies came up with different mappings between voice quality and
emotional categories (Gobl and Chasaide, 2003).

Describing the Glottal Excitation Pattern

To better understand the nature of the parameters which will be presented
in the following paragraphs, we should take a quick look on the phonation
process itself. Fig. 4.19 sketches a glottal cycle during modal phonation. As
visible in the upper plot, the modulation of the glottal area (approximately)
12The arytenoid cartilages are a part of the larynx and control themovement of the vocal folds.
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follows a triangular shape. Due to the inertia of the air mass inside the glot-
tis, the resulting airflow caused by the subglottal pressure is skewed to the
right. The lower plot shows the resulting output sound. Interestingly, the in-
tensity of theoutput sound ismainlydrivenby the abrupt closingof the glottis
(Honda, 2008). Incomplete glottal closure results in a “softer” voicedue to less
intense excitation of the vocal tract.

Figure 4.19.: Sketch of a glottal cycle during modal phonation (from Honda (2008)).

Above: glottal area (dashed) and air�ow through the glottis (solid). Below:

output sound. The vertical line marks the glottal closing.

The glottal excitation pattern can be assessed with an electroglottograph
(EGG) which indirectlymeasures themotion of the vocal cords during speak-
ing through changes in electrical conductivity between two electrodes placed
directly on the throat (Lecluse et al., 1975). Stevens and Hanson (1995)
showed that it is also possible to derive voice quality measures directly from
the acoustic signal. Their measures are based on spectral properties of the
excitation spectrum: if we are able to decompose the speech signal into a
source part and a filter part (see 3.1), it must be possible to subtract the con-
tribution of the filter part from the recorded speech signal to end up with the
glottal excitation signal. The influence of the vocal tract is modeled by the
contribution of the first four formants to the Fourier spectrum. Following
Fant (1970), the effect of the i-th formant Fi with bandwidth Bi at frequency
f can be expressed as

V (f , Fi, Bi ) = 20 log
F 2

i + (
Bi
2 )2√(

(f − Fi )2 + (Bi
2 )2

) (
(f + Fi )2 + (Bi

2 )2
) . (4.4.21)

Using this formula, the vocal-tract compensated amplitude spectrum
��X̃ (f )��

canbe calculated from the classic Fourier amplitude spectrumby subtracting

113



4. Deriving Prosodic and Paralinguistic Parameters

the contributions by the first four formants:

��X̃ (f )�� = |X (f )| − 4∑
i=1

V (f , Fi, Bi ) . (4.4.22)

The acoustic parameters Stevens and Hanson introduced are basically quo-
tients of harmonic peak amplitudes in the vocal-tract compensated ampli-
tude spectrum. Since amplitude is commonly drawn on a logarithmic scale
(in decibels), these quotients turn into differences. In accordance with the
relevant literature on voice quality, I will use these symbols in the following:

H1, H2 Amplitudes at f0 and 2 · f0

F1,p, F2,p, F3,p Frequencies of spectral peaks close to F1, F2, F3

A1,p, A2,p, A3,p Amplitudes of spectral peaks close to F1, F2, F3

These are the measures of voice quality and their acoustic correlates:

I The Open Quotient (OQ) is that fraction of the glottal period during
which the glottis is open. It corresponds to the difference in ampli-
tudebetween thefirst twoharmonic peaks13 in the excitation spectrum,
H̃1 − H̃2.

I The Glottal Opening (GO) describes how wide the glottis opens over
the cycle. Its acoustical correlate is the amplitude of the first formant in
relation to the amplitude of the first harmonic, H̃1 − Ã1,p .

I Skewness (SK) is the degree of asymmetry of the glottal flow curve. The
more skew, the more abrupt the glottis closes. This is reflected in the
amplitude of the second formant, again related to the first harmonic
(H̃1 − Ã2,p).

I The Rate of Closure (RC) corresponds to the velocity of the glottal clo-
sure and can be approximated by the difference in amplitude between
the third formant and the first harmonic, H̃1 − Ã3,p .

I If the glottis is not completely closed during phonation, this Incom-
pleteness of Closure (IC) leads to a loss of energy in the F1 range which
is reflected in the bandwidth of the first formant (B1). Since F1 and thus
B1 depend highly on the vowel produced, a normalized measure is cal-
culated as B1

F1
.

13The fundamental frequency is regarded as the first harmonic, while 2 · f0 (the first overtone)
is the second harmonic.
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Figure 4.20 shows an original short-time amplitude spectrum with marked
values at f0, 2f0, F1, F2, and F3 (in gray) as well as the adjusted values at f0,
2f0, F1,p , F2,p , and F3,p (in black). It is clearly visible that the vocal-tract com-
pensated values are not only lower than the original values, but sometimes
also significantly adjusted in frequency, especially regarding the difference
between F1 and F1,p .
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Figure 4.20.: Spectral properties for voice quality measure calculation: vocal tract-

compensated amplitudes at f0, 2 · f0, F1, F2 and F3.

Calculation of Voice Quality Measures

Lugger et al. (2006) implemented their own versions of Stevens’ andHanson’s
voice quality parameters and successfully used them for emotion recognition
under several background noise conditions. They argue that, just as for in-
completeness of closure, also the measures based on spectral amplitude dif-
ferences should benormalized by the corresponding frequency differences to
remove vowel dependency. I agree on their line of argumentation that spec-
tral gradients will characterize the shape of the glottal spectrum better than
amplitude ratios alone; the five voice quality measures are thus calculated in
the following way:

OQG =
H̃1 − H̃2

f0
(4.4.23)

GOG =
H̃1 − Ã1,p

F1,p − f0
(4.4.24)

SK G =
H̃1 − Ã2,p

F2,p − f0
(4.4.25)

RCG =
H̃1 − Ã3,p

F3,p − f0
(4.4.26)

I C =
B1
F1
. (4.4.27)
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The four corresponding gradients of the example fromFig. 4.20 are visualized
in Fig. 4.21. Note that the y-axis has been scaled for better readability, thus
the gradients seem to be steeper than in Fig. 4.20.
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Figure 4.21.: Gradients calculated from spectral amplitude di�erences, after Lugger et al.

(2006).

4.4.5. What about ... ?

If you have a background in digital signal processing, you might miss one or
another parameter which is frequently featured in other publications. Letme
explain why I have not considered the following potential speech parameters
in this work:

I Mel-Frequency Cepstral Coefficients (MFCCs) are very popular in
speech recognition, because they represent many spectral character-
istics of a sound in a compact way. However, MFCCs are segmental
features, since they change significantly with every single phone (Nwe
et al., 2003), and thus depend on the spoken content.

I Fluctuation strength is one of the four “elementary auditory sensa-
tions” in psychoacoustics, next to loudness, roughness, and sharp-
ness. It is similar roughness, but describes the perception of slower
amplitude-modulated sounds (up to fmod = 20Hz). Since speech sounds
fluctuate very rapidly, thismodulation frequency range is not of interest
for speech analysis.

I Jitter and shimmer describe cycle-to-cycle variations in the oscillation
of the vocal cords. Jitter characterizes irregularities in frequency, while
shimmer is a measure for deviations in amplitude; both are thus mea-
sures of frequency and amplitude modulation phenomena, which is
well captured by the sophisticated calculation of roughness.

116



4.4. Paralinguistic Parameters

Index Category Parameter Name

1 melodic Pitch Onset (absolute)

2 melodic Pitch Onset (w.r.t. Level)

3 melodic Pitch Onset (w.r.t. Final Low)

4 melodic Normalized Pitch Peak Extent

5 melodic Pitch Span

6 melodic Declination

7 melodic Peak Shape Ratios: Average

8 melodic Peak Shape Ratios: Dynamics

9 melodic Local Peak Dynamics

10 melodic Peak Timing Differences: Average

11 melodic Peak Timing Differences: Dynamics

12 melodic Utterance Harmony: Chord

13 melodic Utterance Harmony: Mode

14 rhythmic Meter Regularity

15 rhythmic Tatum Feel

16 rhythmic Prominence Dynamics

17 rhythmic Tempo

18 rhythmic Legatoness

19 paralingustic VQM – Open Quotient Gradient

20 paralingustic VQM – Glottal Opening Gradient

21 paralingustic VQM – Skewness Gradient

22 paralingustic VQM – Rate of Closure Gradient

23 paralingustic VQM – Incompleteness of Closure

24 paralingustic Roughness: Average

25 paralingustic Roughness: Dynamics

26 paralingustic Sharpness

27 paralingustic Harmonics-to-Noise Ratio

Table 4.1.: Complete list of prosodic and paralinguistic parameters. VQM stands for Voice

Quality Measures, �averages� are arithmetic means and �dynamics� are stan-

dard deviations normalized by the means.
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Classi�cation is the process which assigns a sample to a speci�c category based

on a variety of the sample's features. These features must be chosen carefully

to obtain good classi�cation results. In this chapter, the best-performing set of

prosodic and paralinguistic parameters for classi�cation of both emotional speech

and speech under stress are presented.

5.1. Classi�cation and Parameter Selection

Now that we have found 27 different parameters which describe the way we
say it up to a certain degree, we are interested in finding out how well these
parameters reflect the emotional state or the stress level of the person speak-
ing. Because we have learned from the literature that this is a non-trivial task
at all, we try to keep things rather simple by sticking to emotional categories
on the one hand and to a before/after comparison of stressful events.

5.1.1. Classi�cation

Classification is the process which assigns a given sample to a specific cat-
egory based on a variety of features. In the context of this work, a sample is
an sentence from the Emo-DB or the IEM-PSD databases; and the categories
are the seven basic emotions or the three regions before/during/after a po-
tential stressful event, respectively. The features are given by the 27 prosodic
and paralinguistic parameters which have been calculated for each utter-
ance. In mathematical terms, we project each utterance onto one point in a
27-dimensional parameter space where similar objects form clusters of data
points, while dissimilar objects are farther away from each other. A simple
example is given in Fig. 5.1, where apples and bananas are represented by
two features including color and shape (expressed by the length-to-width
ratio). Obviously, color is not a very strong feature for classification purposes,
since their value ranges overlap. On the contrary, the “lengthiness” of a fruit
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allows a clear distinction between apples and bananas. One could draw a
straight line between the two clusters of triangles and circles which perfectly
separates them in space.

Figure 5.1.: Example for classi�cation: apples (triangles) and bananas (circles) are repre-

sented by their colors and shapes as data points in a two-dimensional param-

eter space.

There are two ways to characterize the distribution of data points in the
parameter space. Parametric classification methods describe the data dis-
tribution through probability density functions (pdf), which minimizes the
probability of a wrong decision and — theoretically — always results in an
optimum solution. However, it must be ensured that the data actually fol-
lows the assumed distribution, which is not always the case. Usually, the pdf
is assumed to be multivariate Gaussian, such that a cluster of data points is
described by means and covariances for each dimension of the parameter
space. Nonparametric classification methods use the distances between
single data points as a criterion. If an unknown fruit was to be classified into
the “apple” or the “banana” class in the example mentioned above, it would
be represented by an additional data point in Fig. 5.1, and one would either
calculate the likelihood of belonging to one or the other class, or simplymea-
sure the distance to the closest data points in order to assign a class label to
that fruit.

The ultimate goal in classification is in either case to subdivide the parameter
space into separate regions which each belong to one class and to formulate
mathematical models which describe the decision boundaries between the
classes. Classification is a fundamental task in many areas of computer sci-
ence, and thus the number of methods is manifold. The complexity of this
field is, in my opinion, best summarized by Batliner et al. (2011a):

Finding, fine-tuning, and evaluating classifiers is a broad topic in
its own; although there might be preferences to use one or the other
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approach in specific fields— such as emotion recognition, it gener-
ally suffers from too many degrees of freedom: a strict comparison
across studies is practically never possible. Statements such as “it
has been proved that classifier X is superior to classifier Y”, should
never be generalized. Often it only means that there has been more
fine-tuning for X than for Y. In the long run, it might turn out that
specific models and classifiers based on them are — on the average
— better suited for emotion recognition. However, searching for an
optimal classifier alone will not be a panacea; it will not improve
unsatisfying recognition rates to such an extent that the intended
application will be successful. Anyway, it should be mandatory to
document the steps explicitly, e.g., whether a cross-validation has
been done speaker-independently or in a speaker-dependent way.
This statement holds similarly for comparison across whole stud-
ies: what never should be done is simply to compare recognition
rates between two studies. Such performance depends crucially on
too many factors which have not been standardized yet.

A comprehensive review on classifiers used for emotional speech recogni-
tion has been provided by Anagnostopoulos et al. (2015), including Gaus-
sian Mixture Models (GMM), Hidden Markov Models (HMM), Support Vec-
tor Machines (SVM), Artificial Neural Networks (ANN), Decision Trees, and
k-Nearest Neighbor distance classifiers (kNN). I will not compare different
classifiers against each other, as this is not the focus of my work; I have cho-
sen Support Vector Machines as a classifier due to their ability to minimize
the empirical classification error while maximizing the geometric margin be-
tween the classes at the same time (→ 5.1.5).

5.1.2. Parameter Selection

What is crucial in any case is the selection of relevant parameters for classifi-
cation. The set of prosodic and paralinguistic parameters has been compiled
in all conscience, following the relevant literature in the fields of linguistics
and psychoacoustics as well as some “musical” properties of intonation and
speech rhythm. There is, however, no evidence at this point that theseparam-
eters contain any descriptive power with respect to the emotional state of the
speaker; in other words: we may assume that, e.g., speech rhythm regularity
is affected by emotions, but we do not know if this is the case.

If we include weak ormeaningless parameters in our analysis, we add a lot of
noise to the results— think of the fruit color which does not allow to separate
apples from bananas if it’s not “red” by chance. The difference in distances
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or probabilities will bemore concise if only calculated along the x-axis rather
than in two-dimensional space. In addition, we have to be aware of the curse
of dimensionality (Duda et al., 2012): when the dimensionality of the abstract
parameter space increases, the volume of that space increases exponentially,
and the available data become sparse in comparison. Moreover, the classifier
will tend to over-fit to the data. As a consequence, the classification results
are specific to the training data used and thus not of general use. The goal is
therefore to find the smallest possible set of parameters which each show the
highest possible difference in value for one or the other emotion. This is also
a common task in computer science, often referred to as feature selection1.

In mathematical terms, we have a parameter set

X = {xi | i = 1..N } ,

and we are looking for a sub-set

YM = {xi1, xi2, . . . , xiM } (M < N )

such that
{xi1, xi2, . . . , xiM } = ar g max [ J {xi | i = 1..N }] ,

where J {xi | i = 1..N } represents a target function which could be both a sta-
tistical measure or the accuracy of a classification result obtained using the
sub-setYM

2.

On the one hand, it is by far not sufficient to perform classification with sin-
gle parameters one-by-one, because this would completely ignore the covari-
ances between the parameters. On the other hand, a full-factorial search
through the parameter space where all 2N − 1 possible combinations of pa-
rameters are evaluated would result in 134,217,727 calculation cycles, which
is obviously infeasible to do. The compromise is called sequential parameter
selection: starting from an empty set of parameters,

Y0 = ∅ ,

we sequentially add parameters which — in combination with those already
selected—maximize the value of the target function:

x+ = ar g max
x ∈(X \Yk )

[ J (Yk ∪ x)]

Yk+1 = Yk ∪ x+ .

1Its counterpart, feature extraction, transforms the high-dimensional parameter space into a
lower-dimensional space using techniques like, e.g., Principal Component Analysis (PCA).
Since we want to preserve the meaning of the parameters in order to answer the question
which parameters are suitable for emotion and stress recognition, feature selection is the
method of choice.

2Depending on the formulation of J , the condition for the ideal subset could also be written
using the ar g min() operator
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This iterative method is aborted once the target function saturates. While
conceptually simple and straightforward, this concepts suffers from nesting :
once a feature is part of the set, it cannotbe removedagain. Analternative ap-
proach is to start with the full parameter set and to sequentially remove single
parameters; in this context, we talk about sequential forward and backward
selectionmethods. There also exists a variety of extensions to these methods
to overcome the nesting problem.

5.1.3. Training and Testing

A classifier is an algorithm which classifies unknown objects into a number
of predefined classes based on certain classification rules. These rules are
implemented into the classifier by training it using data with known class
affiliation. Depending on the distribution of data points in the training set,
the classifier might be able to separate the training data perfectly or not; we
can calculate its in-sample classification performance either as a measure
of suitability of the chosen algorithm for that classification problem, or as a
measure of data separability.

This, however, doesn’t tell us anything about its out-of-sample classification
performance, which is the precision in classification of unknown data. The
classifier might have adapted perfectly to some characteristics of the train-
ing data which are no generalities, and thus might show poor performance
when faced with independent data. To avoid the risk of overfitting, a com-
mon trick is to partition the training data set into complementary subsets,
training the classifier on one subset and validating it on the other. In k-fold
cross-validation, multiple cycles of training and testing are performed using
different partitions, averaging the validation results over the cycles.

5.1.4. Parameter Preprocessing

Among the 27 prosodic and paralinguistic parameters listed in Tab. 4.1 on
page 117, there are two categorical parameterswhich are, in thisway, not suit-
able for numerical classification:

I Tatum Feel is either binary or ternary, which can be translated into the
numbers 2 and 3, respectively. By doing this, we indeed invalidate the
rhythmicmeaningof these two terms, butwe stillmight finddifferences
in speaking style between emotions or stress levels if there are signifi-
cant deviations between single classes. For example, an average value of
2.17 could be interpreted as “rather binary”, while 2.89 would be “rather
ternary”.
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I Utterance Mode can be major, minor, diminished, or augmented.
When assigning numeric values to each of these categories, we should
keep in mind that the difference between two values is equivalent to
some kind of similarity between the two corresponding classes. A rea-
sonable assignment might thus be the following:

augmented 1

major 2

minor 3

diminished 4

Thinking of triads, all neighboring chords differ in one tone only, and
their harmonic characteristics are “as similar as possible”. I am sure we
will all agree that augmented and diminished harmonies are the “most
dissimilar” items from this list and thus belong to both ends.

In addition to this, unfortunately,UtteranceChord turned out to be inappro-
priate at all. The relationship between major and minor chords in diatonic
function is of relative kind, meaning that any chord is “musically close” to
some other chord by, e.g., forming its parallel chord (as C − Am), regardless
of its absolute identity, say C or F#. Some kind of musical distance could be
coded using chord distances on the circle of fifths, but its circular shape can-
not bemapped onto absolute positions in the abstract parameter space. As a
consequence, chord quality has to be neglected, while its mode will be used
as describe above.

5.1.5. Support Vector Machines

Support Vector Machines (SVM) are referred to as a large margin classifier,
aiming at the creation of decision boundaries with the largest distance to the
nearest training data point of any class. The idea behind maximizing this
functional margin is to lower the generalization error of the classifier, that
is, making it as robust as possible.

This is sketched in Fig. 5.2 which shows the optimumdecision boundary ver-
sus two sub-optimal decision boundaries (small plots) in terms of a maxi-
mum margin for an exemplary distribution of data points. The boundary is
surrounded by two parallel, equidistant margin lines (dashed) which touch
the closest data points from both classes. These data points are the only rel-
evant points for the positioning of the boundary, and they are called the sup-
port vectors (thus the name).
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Figure 5.2.: Support Vector Machine classi�cation: distribution of data points belong-

ing to two di�erent classes and di�erent ways to draw a decision boundary:

optimal (left) and suboptimal cases (right).

In this simple two-dimensional example, the data points are separated by a
straight line. In the general p-dimensional case, each data point is charac-
terized by a p-dimensional vector, and the decision boundary is a (p − 1)-
dimensional hyperplane. An SVM is thus a binary, linear classifier which can
be adapted to the multi-class, nonlinear case in the following way:

I Weeither trainM binary classifierswhich separate one class fromall the
others (one-versus-all), or we train one classifier for each pair of classes,
ending up with

(M
2
)
classifiers (one-versus-one).

I Misclassifications are allowed, but penalizedwith an adjustable weight.

I Theoriginal feature space is transformed intoahigher-dimensional fea-
ture space where the data are linearly separable; this is known as the
“kernel trick” and has been introduced by Boser et al. (1992).

Further details on Support VectorMachines can be found, for example, in the
SVM tutorial by Burges (1998), and on www.kernel-machines.org.
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5.2. The Prosody of Emotional Speech

5.2.1. Investigated Speech Data

The Berlin Database of Emotional Speech, or simply Emo-DB, was created by
Burkhardt et al. (2005). Ten different German sentences (5 long, 5 short) were
produced by 10 actors (5 male, 5 female) in 6 different emotions (angry, anx-
ious, bored, disgusted, happy, sad) as well as in a neutral version. The sen-
tences, listed in Tab. 5.1, are emotionally neutral and consist of everyday vo-
cabulary, such that theymake sense in every realized emotion. For some sen-
tences, several versions in the same emotion have been recorded, resulting in
a total of approximately 800 sentences.

1 Der Lappen liegt auf dem Eisschrank.
The cloth is lying on the frigde.

2 Das will sie amMittwoch abgeben.
She wants to hand it in onWednesday.

3 Heute abend könnte ich es ihm sagen.
Tonight, I could tell him.

4 Das schwarze Stück Papier befindet sich da oben neben dem
Holzstück.
The black piece of paper is up there besides the piece of wood.

5 In sieben Stunden wird es soweit sein.
In seven hours, it will be ready.

6 Was sind denn das für Tüten, die da unter dem Tisch stehen?
What about these bags under the table?

7 Sie haben es gerade hochgetragen und jetzt gehen sie wieder
runter.
They just carried it up, and now they are going down again.

8 An denWochenenden bin ich jetzt immer nach Hause gefahren
und habe Agnes besucht.
The last weekends, I always went home to see Agnes.

9 Ich will das eben wegbringen und dann mit Karl was trinken
gehen.
I just want to take this away, and then go for a drink with Karl.

10 Die wird auf dem Platz sein, wo wir sie immer hinlegen.
It will be at the place where we always put it.

Table 5.1.: Sentences from Emo-DB with English translation.
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These recorded sentences were subsequently presented to 20 test subjects
who had to recognize the emotion and were asked to rate the authenticity
of the acted emotions. Only those sentences were selected which showed
a correct recognition rate of at least 80% and which were considered “au-
thentic” by at least 60% of the listeners. The database finally comprises
535 sentences in total and comes with phonetic transcriptions both on the
phoneme and on the syllable level. It is publicly available via the internet:
http://www.expressive-speech.net/emodb/.

While checking the integrity of the data, I found out that 42 of the 535 sen-
tences have missing or corrupt syllable transcriptions, so they have been ne-
glected for everything reported so far in this thesis. Altogether, 493 sentences
are left for analysis. Fig. 5.3 gives an overview on which sentence is avail-
able fromwhich speaker in which emotion. As obvious from these charts, the
emotions disgusted and sad are very scarce, and also anxious and happy just
exceed 50% of the theoretically available number of sentences (which is the
product of the number of sentence types and the number of speakers).

Sentence 1

1 2 3 4 5 6 7 8 9 10

angry
anxious

bored
disgusted

happy
neutral

sad

Sentence 2

1 2 3 4 5 6 7 8 9 10

Sentence 3

1 2 3 4 5 6 7 8 9 10

Sentence 4

1 2 3 4 5 6 7 8 9 10

Sentence 5

1 2 3 4 5 6 7 8 9 10

angry
anxious

bored
disgusted

happy
neutral

sad

Sentence 6

1 2 3 4 5 6 7 8 9 10

Sentence 7

1 2 3 4 5 6 7 8 9 10

Speaker

Sentence 8

1 2 3 4 5 6 7 8 9 10

SpeakerSentence 9

1 2 3 4 5 6 7 8 9 10

Speaker

angry
anxious

bored
disgusted

happy
neutral

sad

Sentence 10

1 2 3 4 5 6 7 8 9 10

Speaker

Figure 5.3.: Distribution of sentences over speakers and emotions. A black square indicates

that this sentence is available by this speaker (x dimension) and in this emotion

(y dimension).

The relevant statistics are shown in Fig. 5.4, which is the distribution of emo-
tions over speakers. For two speakers, not one single disgusted sentence is
available, such that specific classifiers for these speakers could only distin-
guish between 6 instead of 7 classes. In any case, it will not be possible to ap-
ply cross-validation in speaker-specific classification due to the small num-
ber of samples in single classes.
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Figure 5.4.: Distribution of emotions over speakers. The numbers indicate the overall

amount of sentences a speaker has produced in that emotion, the colors

correspond to the numbers (dark = low, bright = high) and help to �nd

structure within the data. Italic numbers outside the box show the sums over

all speakers and emotions, respectively.

5.2.2. Relevant Parameters

Parameter Scaling

Since one of the parameters turned our to be inappropriate for classifica-
tion (section 5.1.4), 26 out of 27 prosodic and paralinguistic parameters are
collected for 493 sentences in total. A check for not-a-number values (NaN)
causes 9 sentences to be removed, aswell as 2 sentences due to infinitely high
values for at least one parameter. Finally, 482 sentences from Emo-DB are
available for further analysis.

In addition to the absolute parameter values, relative parameters are calcu-
lated with respect to two different references:

a) A reference value for each parameter is calculated by taking the average
over all sentences from that speaker, aiming at estimating his or her “nor-
mal” speaking style. These values will be referred to as “rel. avg.” in the
result tables.

b) A reference value for each parameter is calculated by taking the average
over all neutral sentences from that speaker, making use of the fact that
Emo-DB provides a designated reference speaking style anyway. These
values will be referred to as “rel. neutral” in the result tables.

In both cases, the absolute parameters are one-by-one divided by their re-
spective reference values and subsequently checked for outliers whichmight
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occur due to, e.g., division by very small numbers. If outliers are detected, the
corresponding sentences are not considered in the classification, such that
the total number of sentences available is reduced. As the parameter peak
timing differences: dynamics turns out to produce a vast amount of outliers
through scaling, this parameter is rejected to prevent the deletion of the ma-
jority of sentences, such that only 25 parameters are left when performing
classification with relative values.

I When taking averaged parameter values as the reference, 81 sentences
have to be removed due to outliers, such that 401 sentences in 7 classes
are available for classification.

I When taking neutral parameter values as the reference, the 77 neutral
sentences3 have to be ignored for obvious reasons. Only 1 single outlier
is detected, and 404 sentences are available for classification.

Speaker-Speci�c Classi�cation Results

To investigate how suitable our prosodic and paralinguistic parameters are
for emotion recognition, SVMclassifiers are trained based on the speech data
of each speaker. Due to the limited number of samples in single classes, no
cross-validation can be performed, such that the result will only represent
the in-sample classification accuracy which does not allow to draw general
conclusions from it. The classification accuracy is calculated by the Correctly
Classified Ratio (CCR) which simply relates the number of correctly assigned
samples to the total number of samples,

CC R =
# correct assignments

# samples . (5.2.1)

Both sequential forward and backward parameter selection are performed
using the SVM classification error (1 − CC R) of the current parameter set as
the optimization criterion. If more than one set of parameters leads to the
sameminimum classification error, the smallest of these sets is chosen to be
the best-performing parameter set.

The results for each of three parameter scaling methods, given in Tab. 5.2,
show that perfect classification of emotions is possible for each speaker, us-
ing just a fraction of the full parameter set. Please note that the classifica-
tion problem is reduced to 6 classes for speakers 1 and 2 due to missing dis-
gusted sentences, and that the neglected neutral emotion for the “averaged
w.r.t. neutral” parameters also reduces the number of classes by one, so that
we end up with just 5 classes for speakers 1 and 2, and 6 for the others.
3One of the 78 neutral sentences from Fig. 5.4 has previously been removed due to NaN or
Inf values.
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Speaker
absolute rel. avg. rel. neutral

CCR nP CCR nP CCR nP

1 (m) 100% 8 100% 6 100% 6

2 (f) 100% 8 100% 5 100% 4

3 (f) 100% 9 100% 7 100% 6

4 (m) 100% 4 100% 5 100% 3

5 (m) 100% 9 100% 7 100% 9

6 (m) 100% 5 100% 4 100% 5

7 (f) 100% 11 100% 9 100% 9

8 (f) 100% 11 100% 8 100% 11

9 (m) 100% 8 100% 7 100% 6

10 (f) 100% 8 100% 7 100% 7

Table 5.2.: Correctly classi�ed ratios and corresponding numbers of parameters used for

every single speaker and all three scaling types. CCR = correctly classi�ed

ratio, nP = number of parameters in best-performing set, m and f indicate

the gender of the speakers.

Since all classifiers achieve thebest performance valuepossible, a direct com-
parison seems to bemeaningless; butwhatwe can do is to compare the num-
ber of parameters contained in the best-performing set. Apparently, less pa-
rameters are necessary to achieve the same classification result when using
relative values; at least for those calculated with respect to average values4.
I would see this as a sign of quality, since a smaller parameter set suggests a
higher potential for generalization.

To see which of our 26 parameters are contained in the best-performing sets,
let’s have a look at Fig. 5.5 which displays the CCRs for each speaker in the
lower plot and the corresponding set of parameters above the bars, both for
absolute parameter values. What attracts attention is the fact that there is lit-
tle consistence between the parameter sets. Onemight detect similarities be-
tween speakers 2 and5aswell asbetween1and10, but in general, the compo-
sition of the parameter sets is very diverse. This observation is in accordance
with the commonly stated fact that between-speaker differences in absolute
speech parameter values often exceed between-emotion differences, which
clearly limits the performance of speaker-independent classifiers using abso-
lute values.
4The feature sets built from relative values w.r.t. the neutral emotion are also smaller (or
equal) in size than their corresponding absolute-value parameter sets, but this might be
caused by the reduced number of classes; I thus avoid a clear statement here.
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[M] Pitch Onset (absolute)

[M] Pitch Onset (w.r.t. Level)

[M] Pitch Onset (w.r.t. Final Low)

[M] Normalized Pitch Peak Extent

[M] Pitch Span

[M] Declination

[M] Peak Shape Ratios - Average

[M] Peak Shape Ratios - Dynamics

[M] Local Peak Dynamics

[M] Peak Timing Differences - Average

[M] Peak Timing Differences - Dynamics

[M] Utterance Harmony - Mode

[R] Meter Regularity

[R] Tatum Feel

[R] Prominence Dynamics

[R] Tempo

[R] Legatoness

[P] VQM - Open Quotient Gradient

[P] VQM - Glottal Opening Gradient

[P] VQM - Skewness Gradient

[P] VQM - Rate of Closure Gradient

[P] VQM - Incompleteness of Closure

[P] Roughness - Average

[P] Roughness - Dynamics

[P] Sharpness

[P] Harmonics-to-Noise Ratio
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specific
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Figure 5.5.: Parameter selection for speaker-speci�c SVM classi�ers using absolute pa-

rameters. Upper plot: black markers indicate that a parameter is part of the

best-performing set for that speaker. Lower plot: all classi�ers achieve a CCR

of 100%; m and f denote the gender of the speaker.

Although there is no parameter which would have never been used in any
of the best-performing parameter sets, the rhythmic parameters seem to be
significantly less important for emotion recognition than the others — at
least when using absolute parameter values. The emotions of some speakers
can primarily be distinguished by voice quality parameters (e.g., speakers 2,
5,and 7), othersmainly differ inmelodic parameters (e.g., speaker 3), and still
others make use of parameters from all. The most often selected parame-
ters are absolute pitch onset, rate-of-closure gradient, average roughness, and
harmonics-to-noise ratio. Interestingly, pitch onset w.r.t. final low is often
selected together with the absolute pitch onset value, which suggests that
these values are not redundant, but add some new information instead.
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However, things are a little different when looking at the parameter sets for
classification with relative parameter values (with respect to average values).
As visible in Fig. 5.6, average roughness is still themost often selectedparame-
ter and also the pitch onset-related parameters seem play amajor role again;
but now, also rhythmic parameters including tempo and legatoness gain in
importance.

[M] Pitch Onset (absolute)

[M] Pitch Onset (w.r.t. Level)

[M] Pitch Onset (w.r.t. Final Low)

[M] Normalized Pitch Peak Extent

[M] Pitch Span

[M] Declination

[M] Peak Shape Ratios - Average

[M] Peak Shape Ratios - Dynamics

[M] Local Peak Dynamics

[M] Peak Timing Differences - Average

[M] Utterance Harmony - Mode

[R] Meter Regularity

[R] Tatum Feel

[R] Prominence Dynamics

[R] Tempo

[R] Legatoness

[P] VQM - Open Quotient Gradient

[P] VQM - Glottal Opening Gradient

[P] VQM - Skewness Gradient

[P] VQM - Rate of Closure Gradient

[P] VQM - Incompleteness of Closure

[P] Roughness - Average

[P] Roughness - Dynamics

[P] Sharpness

[P] Harmonics-to-Noise Ratio
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Figure 5.6.: Parameter selection for speaker-speci�c SVM classi�ers using relative param-

eters (w.r.t. average values). Description: see above.

Again, a different picture emerges for the relative parameters with respect to
the neutral emotion (Fig. 5.7): pitch onset-related parameters do not seem
to be of great importance and legatoness remains the only relevant rhythmic
parameter, whereas paralinguistic parameters including the open-quotient
gradient, sharpness, and harmonics-to-noise ratio dominate the parameter
sets.

It is questionable if these results give valid evidenceonwhichparameters best
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[M] Pitch Onset (absolute)

[M] Pitch Onset (w.r.t. Level)
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Figure 5.7.: Parameter selection for speaker-speci�c SVM classi�ers using relative param-

eters (w.r.t. neutral emotion). Description: see above.

reflect cognitive stress, as there are significant differences between the two
types of relative parameters which have been calculated using two different
kinds of reference data, but with the same goal, namely to represent devi-
ations from the “normal” speaking style. We might, however, name several
parameters which are rarely present in all three collections of feature sets:

I Peak Shape Ratios
I Meter Regularity
I Tatum Feel
I Prominence Dynamics

The fact that three of these parameters are rhythmic descriptors might sug-
gest that speech rhythm is not as much affected by emotions as speech
melody or timbre, but one could as well question if the descriptors of speech
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rhythm proposed in this thesis capture the rhythm phenomenon in an ap-
propriate way.

There is no evidence that gender plays a role in the parameter selection pro-
cess at all.

Global Classi�cation Results

To investigate if there is a global set of parameters which allows emotion clas-
sification with satisfying precision, the same approach as described above is
followed again, this time considering all available sentences for one single
SVM classifier. To prevent the parameter selection algorithms from getting
caught in local minima5, they are forced to go through the complete param-
eter set, even if the criterion gets worse again. Now that we have a sufficient
number of samples in each class, we can perform cross-validation. The pa-
rameter k is set to 10, which is not only a commonly chosen value, but defi-
nitely makes sense regarding the sample sizes.

The results for the three parameter scaling types are given in Tab. 5.3. Shown
are CCRs of the best-performing parameter sets for both parameter selec-
tion methods as well as the number of parameters in the corresponding sets
(nP).

Scaling nC Dir. CCR nP nP 95%

absolute 7
fw 64.11% 24 10

bw 67.43% 22 13

rel. avg. 7
fw 70.32% 16 12

bw 69.58% 15 8

rel. neutral 6
fw 69.31% 19 9

bw 68.56% 12 7

Table 5.3.: Correctly classi�ed ratios and corresponding number of parameters using a

global classi�er for all three scaling types. nC = number of classes, fw =

forward selection, bw = backward selection, nP = number of parameters in

best-performing set, nP 95% = number of parameters in reduced set which

still yields 95% of the best set's CCR.

5Parameter selection algorithms commonly stop adding or removing parameters if the cri-
terion does not further improve — they have found a minimum in the objective function.
It might, however, be the case that there is a global, “better” minimum a few steps ahead
which is never found if the algorithms stop at the current point.
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To evaluate how meaningful the last added parameters really are, the selec-
tion history is traced back to the point where the CCR just exceeds 95% of its
highest value. As an example, the best set for absolute parameters foundwith
forward selection includes 24 parameters and yields a CCR of 64.11%. With
just 10 parameters, we still get 61.20%CCR, which is 95.47% of the best value.
In otherwords, one can estimate howmanyparameters contribute to the first
95% of the information (nP 95%), and howmany to the last 5%.

When looking at the percentages of correctly classified samples, we should
keep in mind that chance level is only 14.3% for 7 classes and 16.7% for 6
classes. Apparently, the best result has been found using forward selection of
relative parameters w.r.t. average values, which is nearly 5 times better than
chance. Fig. 5.8 illustrates the sequential parameter selection process for this
best result.

[M] Pitch Onset (absolute)

[M] Pitch Onset (w.r.t. Level)

[M] Pitch Onset (w.r.t. Final Low)

[M] Normalized Pitch Peak Extent
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[M] Declination

[M] Peak Shape Ratios - Average

[M] Peak Shape Ratios - Dynamics

[M] Local Peak Dynamics

[M] Peak Timing Differences - Average

[M] Utterance Harmony - Mode

[R] Meter Regularity

[R] Tatum Feel

[R] Prominence Dynamics

[R] Tempo

[R] Legatoness

[P] VQM - Open Quotient Gradient

[P] VQM - Glottal Opening Gradient

[P] VQM - Skewness Gradient

[P] VQM - Rate of Closure Gradient

[P] VQM - Incompleteness of Closure
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[P] Roughness - Dynamics
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[P] Harmonics-to-Noise Ratio
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global
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(averaged)

Figure 5.8.: Sequential forward parameter selection for the global SVM classi�er using

relative parameters (w.r.t. average values). Description: see above.
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The lower plot in Fig. 5.8 shows the CCR for each parameter selection step,
while the evolution of the parameter set is illustrated in the upper plot, where
black squares mark those parameters which are in the set at the current
step.

When comparing this result to those for the other scaling methods and pa-
rameter selection directions (which have been moved into appendix A.2 for
better clarity6), it is apparent that these different approaches deliver diver-
gent results. To provide an overview, I have analyzed which parameters are
selected how often, and how often they are part of a best-performing param-
eter set. In Fig. 5.9, we see the overall selection frequency on the left side, that
is, how many times a parameter has been part of the set over all selection
steps, with the theoretical maximum being (6 · 25 =) 150 times. On the right
side the occurrence in best sets is displayed, where the maximum is obviously
6.

The following parameters are always part of the best-performing parameter
set, regardless of scaling type or selection direction:

I Pitch Onset (both absolute and with respect to final low)
I Local Peak Dynamics
I Speech Tempo
I 4 out of 5 Voice Quality Measures (except for GOG)
I Average Roughness
I Harmonics-to-Noise Ratio

The overall impression from the parameter selection results for a global Emo-
DB classifier is that Pitch Span,Utterance Harmony,Meter Regularity, Tatum
Feel, and Sharpness have only little descriptive power for the emotional state
of the speakers. The fact that some of these parameters are part of the best-
performing set in 50% of the cases is not of great relevance, since these sets
are relatively large (see Tab. 5.3), and the increments in CCR introduced by
adding these parameters are negligible.

6The figures start from page 160.
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5. Results

5.3. The Prosody of Speech Under Stress

5.3.1. Investigated Speech Data

The IEM Pilot Speech Database (IEM-PSD) has extensively been introduced
in chapter 2. According to the flight program, there are 18 potential stress-
invoking events in total. As a “ground truth” for the actual stress the partici-
pants were exposed to, their heart rates have been measured over the whole
experiment, such that we are able to calculate heart rate variability (HRV) pa-
rameters for any time period we like.

As a reminder, Tab. 5.4 lists all events from the flight plan which shall be an-
alyzed in this section

Event ID Description

0a Reference flight: Takeoff

0b Reference flight: Landing

1a Flight 1: APU fails

1b Flight 1: Runway change during taxi

1c Flight 1: Engine #2 hot start trial

1d Flight 1: Takeoff

1e Flight 1: TCAS alert

1f Flight 1: Engine #1 flame out

1g Flight 1: Landing / Engine #2 fire

2a Flight 2: Takeoff

2b Flight 2: Engine #1 seizure

2c Flight 2: Generator #2 failure

2d Flight 2: Landing / Gear collapse

3a Flight 3: Engine #1 flame out / Takeoff abortion

3b Flight 3: Engine #1 fire

4a Flight 4: Takeoff

4b Flight 4: Engine flame out

4c Flight 4: Landing

Table 5.4.: List of events from IEM-PSD.
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5.3. The Prosody of Speech Under Stress

HRV Parameters as a Reference for Stress Level

Unfortunately, biological signals have a substantially lower temporal resolu-
tion in comparison with acoustical signals. The pulse rate in rest is typically
[50..100] beats per minute for adults, so one can imagine that it takes some
time before measures of frequency or variability can be calculated. Instan-
taneous heart rate as a descriptor for stress level would be just as valuable
as a few individual pitch values would be (namely, not at all). The common
approach for calculating HRV parameters in cardiology is to use overlapping
analysis windows of 5 minutes, resulting in a time series of parameter values
for observation periods of several hours (Malik et al., 1996).

This has two consequences:

I Wewill not be able to assign a “reference stress level” to every utterance;
conversely, we will have to assign several utterances to a stress level.

I The immediate reaction to a stressful event—which is indeed visible in
the instantaneous heart rate — is typically decayed within 30 seconds.
If we captured this reaction using a 5-minute window, we would not be
able to distinguish between the three states before, during, and after the
event due to temporal smearing of the parameter values. We thus have
to perform event-based analysiswith analysis windows as short as pos-
sible.

From a theoretical point of view, theminimumwindow length is determined
by the lowest frequency band considered in the analysis. The LF band goes
down to 0.04Hz (→ 2.3.2), so theminimumwindow length is 25 seconds; to be
on the safe side, I have chosen 30 seconds. This enables us to capture the im-
mediate stress reactionprovokedby the event separate fromthephysiological
steady-state phases before and after the event, as sketched in Fig. 5.10.
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Figure 5.10.: Event-based analysis: HRV parameters are calculated in windows of 30 sec-

onds within 5 minutes before the event (A) and 5 minute after the event

(B), leaving a 30-second �cool-down phase� immediately after the event.
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For both of these regions before and after an event, a set of HRVparameters is
calculated (see section 2.3.2). To investigate if the individual events have in-
troduced stress on the pilots, the in-sample classification accuracy7 of these
two HRV parameter sets is determined for each speaker and each event indi-
vidually. If classification accuracy is low, it can be concluded that the related
event has had no significant impact on that pilot. Fig. 5.11 displays HRV clas-
sification accuracies for each speaker and each event as vertical bars, and the
average accuracies over all speakers are given numerical across each group of
bars8.
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SVM Classification Performance: HRV Parameters
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Figure 5.11.: IEM-PSD classi�cation performance of �before� vs. �after� using HRV pa-

rameters for all subjects and events. Di�erent shades of gray indicate di�er-

ent speakers; the numbers are the average classi�cation performance over

all subjects.

Selected Events from IEM-PSD

Since both quality and extent of a stress reaction are highly individual, the
stress reaction of each speaker must be evaluated individually. Classification
algorithms, however, need a sufficient number of data values in order to gain
some explanatory power. As a consequence, we have to specify a threshold
7This means that the training data and the test data are identical, and we want to find out
how well the data can be separated in the first place.

8Please note that the HRV data “before event 0a” in session 4 and “after event 4c” in sessions
1/3/4 turned out to be invalid, so they had to be neglected.
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5.3. The Prosody of Speech Under Stress

value for the required number of utterances before as well as after the event.
The higher we set this value, the stronger the classification result, but also so
much lower the number of events which fulfill this condition.

The number of available events as a function of the minimum number of ut-
terances is depicted in Fig. 5.12. It seems reasonable to set this threshold
value to 10, ending upwith 28 events in total. These 28 events in total mean 9
unique events, unfortunately only from the first two flights and the reference
flight (Events 0a, 1a, 1b, 1c, 1d, 1e, 2a, 2b, 2c; see Fig. 2.2 on page 35.)
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Figure 5.12.: Number of available events, broken down by di�erent speakers, as a function

of the minimum number of utterances both before and after the event.

5.3.2. Relevant Parameters

For the classification of speech under stress, I will follow a similar approach
as for emotional speech (→ 5.2.2). In this case, there is no effective “neutral”
state available, so there will be only one type of relative values. At the same
time, classifiers can be created not only globally or speaker-specifically, but
also event-specifically.

Parameter Scaling

Just as for Emo-DB, 26 prosodic and paralinguistic parameters are investi-
gated as potential descriptors of stress level. Altogether, 1063 utterances are
available for further analysis, after having removed 34 utterances due to erro-
neous parameter values.

In addition to the absolute parameter values, relative parameters are calcu-
lated with respect to the average over all sentences from that speaker. This
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5. Results

is done by dividing the absolute parameters one-by-one divided by their re-
spective reference values and subsequently checking the resulting values for
outliers which might have occurred due to, e.g., division by very small num-
bers. If outliers are detected, the corresponding sentences are not considered
in the classification, such that the total number of sentences available is re-
duced. At the end, 173 utterances had to be removed due to outliers, such
that 890 of them are still available for classification.

Speaker-Speci�c Classi�cation Results

Using the same methodology as for Emo-DB, SVM classifiers are trained
based on the speech data of each speaker. Due to the limited number of
samples in single classes, no cross-validation can be performed, such that
the result will only represent the in-sample classification accuracy. Both se-
quential forward and backward parameter selection are performed using the
SVM classification error (1 − CC R) of the current parameter set as the op-
timization criterion. If more than one set of parameters leads to the same
minimum classification error, the smallest of these sets is chosen to be the
best-performing parameter set.

The results are given in Tab. 5.5. We see that, for 3 out of 8 speakers, there is
no single event which fulfills both quality criteria (required stress impact and
sufficient number of speechfiles) at the same time. In contrast to theEmo-DB
results, the SVM is not able to classify the speech samples perfectly in most
of the cases. However, the percentage of correctly classified samples is not
only significantly about chance level, but generally on par with the reference
CCRs from the heart rate variability parameters. Relative parameters are, on
the whole, superior to absolute parameters, due to the fact that they achieve
better classification rates with fewer parameters (with one exception for each
of these two statements). This trend coincides with what we observed for the
speaker-specific classifiers built on Emo-DB speech data9.

Please note that these speaker-specific classifiers implicitly are also event-
specific classifiers, since there is not more than 1 event per speaker at which
the HRV parameters were able to classify “before” vs. “after” better than 80%
CCR, while at the same time at least 10 utterances were available from both
classes.

Let’s also have a look on the parameterswhich form the best-performing sets,
displayed in Fig. 5.13. We can again observe considerable individual differ-
ences between speakers which make use of a wide variety of parameters, re-
9The classifiers achieved 100% CCR in all cases, but the number of parameters needed to
achieve this result was clearly lower for relative parameters (→ 5.2.2).
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5.3. The Prosody of Speech Under Stress

Speaker Events
absolute relative

CCRHRV
CCR nP CCR nP

S1: CMDR 2c 84.21% 17 91.67% 14 81.08%

S1: F/O — — — — — —

S2: CMDR 2a 83.78% 12 83.87% 15 89.19%

S2: F/O 2c 86.36% 20 84.09% 13 94.59%

S3: CMDR — — — — — —

S3: F/O — — — — — —

S4: CMDR 1a 100.00% 19 100.00% 15 89.47%

S4: F/O 1b 91.67% 12 92.59% 9 81.08%

Table 5.5.: Correctly classi�ed ratios and corresponding numbers of parameters used for

every single speaker and both scaling types. CCR = correctly classi�ed ratio,

nP = number of parameters in best-performing set.

spectively. However, some commonalities are also apparent: melodic param-
eters are not strongly represented, with the exception of average peak timing
(in the absolute parameters) and the dynamics of peak shape ratios. Apart
from the glottal opening gradient, voice quality measures do not dominate
the parameter sets as in the Emo-DB results, whereas some rhythmic param-
eters perform surprisingly well, including prominence dynamics, tempo, and
legatoness.

It is notable that the numbers of parameters needed to achieve the best-
possible result is significantly higher for speech data from IEM-PSD than for
Emo-DB data. On average, absolute parameter sets consist of 16 parame-
ters (Emo-DB: 8), and relative parameter sets include about 13 parameters
(Emo-DB: 6-7). One might question if this is due to the different nature of
speech under stress compared to emotional speech, or if the reason for this
difference might rather be found in “acted vs. natural speech”.

Event-Speci�c Classi�cation Results

Since the different events in the flight plan are assumed to put different kinds
of demand on the participants, their impact on the pilots’ speech is expected
to vary as well. To investigate this, event-specific global classifiers are created
for eachof the selected events. The classification results for eachof these clas-
sifiers are given in Tab. 5.6; the number of speakers contained in the training
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5.3. The Prosody of Speech Under Stress

data for the classifier depends on the amount of utterances produced before
and after the event10.

Event Speakers
absolute relative

� CCRHRV
CCR nP CCR nP

0a 3 66.67% 18 74.42% 17 72.97%

1a 1, 2, 4, 7, 8 66.33% 16 72.08% 6 73.15%

1b 5, 6, 7, 8 66.89% 13 69.23% 11 73.17%

1c 7 74.42% 7 72.50% 9 76.32%

1d 1, 2, 6, 8 62.04% 14 80.23% 8 71.15%

1e 7, 8 81.82% 22 78.26% 16 75.73%

2a 1, 3 79.75% 16 76.71% 16 82.83%

2b 1, 2 74.29% 16 79.37% 13 73.76%

2c 1, 4, 8 75.00% 12 76.85% 13 81.37%

Table 5.6.: Correctly classi�ed ratios and corresponding numbers of parameters used for

every single event and both scaling types. CCR = correctly classi�ed ratio, nP

= number of parameters in best-performing set.

For these results, adirect comparisonofCCRs for speechparameters andHRV
parameters is not reasonable, because the average classification accuracy of
the HRV parameters has been determined for each participant individually
and the � CCR HRV value given in Tab. 5.6 is just the average accuracy for all
subjects involved. The correctly classified ratios for the speech parameters,
in contrast, are not speaker-specific, but result from global classifiers trained
with data from that specific event. We can again state that the number of nec-
essary parameters for best-possible classification is generally lower when us-
ing relative parameters. On average, the classification accuracy is also better
(CCR = 75.52%, opposed to 71.91% for absolute parameters). As obvious from
Fig. 5.14, there is no obvious tendency towards one or the other category —
melodic, rhythmic, paralinguistic — of parameters, due to the relatively big
size of the best-performing parameter sets. Single parameters, however, in-
cluding the dynamics of peak timing andmeter regularity, are rather seldom
to appear in one of the “best sets”. Three events attract attention because of
their relatively small sets of best-performing parameters with regard to rela-
tive parameters, (that is, events 1a, 1c, and 1d), but even in these cases, no
clear trend towards one or the other category is visible.

10The second condition from the speaker-specific classifiers, that the HRV parameters must
at least show a classification accuracy of 80%, has been dropped due to the fact that Tab.
5.6 would otherwise be identical with Tab. 5.5, since there has been only one event per
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5.3. The Prosody of Speech Under Stress

Global Classi�cation Results

Finally, let’s see howwell a global classifierwould performon the pilot speech
database. We should not raise great expectations on its classification accu-
racy due to the frequently mentioned inter-personal differences in stress re-
sponses aswell as general speaking style, but it is nevertheless interestinghow
far we can get with this.

For the sake of completeness, I have also trained SVM classifiers on all 9 se-
lected events, independent of the ground truth given by theHRV parameters.
For some of these events, we have only little evidence for actual stress im-
pact. Thismeans thatwe are looking for changes in speech parameterswhich
mayhavenot changed significantly, because therewas nodriving forcewhich
coud have changed the cognitive state of the speaker; in other words, we in-
troduce a lot of noise. As visible from Tab. 5.7 (“selected” category), the clas-
sification accuracy just exceeds chance level.

Events Scaling Dir. CCR nP nP 95%

selected

absolute
fw 53.12% 15 1

bw 53.93% 6 1

relative
fw 57.01% 15 1

bw 56.20% 4 2

qualified

absolute
fw 60.73% 16 12

bw 65.97% 10 7

relative
fw 64.91% 16 5

bw 70.76% 10 4

Table 5.7.: Correctly classi�ed ratios and corresponding number of parameters.

But things change when we only consider “qualified” events which fulfill the
condition of showing a classification accuracy of at least 80% in the HRV pa-
rameters. The best result is achieved with a set of 10 parameters found using
sequential backward selection of relative parameters. When tracing the his-
tory of this selection procedure (as shown in Fig. 5.15) and read it from right
to left, we will discover that three paralinguistic parameters (harmonics-to-
noise ratio and2voicequalitymeasures) form thebasis of the parameter set,
supplemented by one rhythmic (legatoness) and twomelodic (local peakdy-
namics and dynamics in peak shape ratios) parameters. This set of 6 relative
parameters already facilitates classification of qualified IEM-PSD events with
an accuracy of 69.01%.

speaker which fulfilled both conditions.
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5. Results
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Figure 5.15.: Sequential backward parameter selection for all quali�ed events from IEM-

PSD using relative parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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5.4. Discussion

5.4. Discussion

When comparing the classification results for Emo-DB and IEM-PSD, we
should keep inmind that we do not just have “emotions” on the one side and
“stress” on the other, but also (or should I say rather?) prompted sentences
in acted emotional states here and free speech in situations of actual stress
there.

The classification results presented in this chapter should be seen as indi-
cations of descriptive power of single speech parameters, but not as reliable
statements regarding the absolute numbers. I have put little efforts in tun-
ing the SVM parameters, and I have not considered alternative classifica-
tion methods, since the scope of my research is something different. I think
that Batliner’s statement on the sense in comparing classification rates be-
tween different studies (see the quote on page 120) is true. Nevertheless, it is
worth having a look at the classification accuracies in terms of CCRs for both
databases.

Speaker-specific classifiers for the Emo-DB data manage to assign the cor-
rect emotion label for 100% of the sentences with 6.5 relative parameters on
average (see Tab. 5.2 on page 130). Keeping in ind that chance level is just
about 14% for 7 categories, this is an impressive statement and confirms that
the prosodic and paralinguistic parameters presented in this thesis indeed
describe the way we speak, even if the acted emotions might have been per-
formed in a very “intense” way — what fosters their differentiation — and
considering that in-sample classification generally leads to highly specific re-
sults.

In contrast, the speaker-specific classifiers (which were implicitly also event-
specific) for the IEM-PSD data only show an average classification accuracy
of 90.44% and need twice as much speech parameters to do so (see Tab. 5.5
on page 143) — and in this case, chance level is at 50% for a binary decision.
This is not just as impressive in absolute numbers, but one can imagine that
this classification task is by far more difficult. To my knowledge, there are
no other studies on speech under stress which actually apply a classification
algorithm to differentiate between “stress” and “non-stress” conditions; sta-
tistical measures as p-values of ANOVA analyses are, in my opinion, difficult
to grasp. In any case, the investigated prosodic and paralinguistic parameters
have certainly proven their general applicability for stress recognition, since
they do not only reach, but even outperform the establishedHRV parameters
in classification accuracy (90.44% vs. 87.08% CCR for speaker-specific classi-
fiers).
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5. Results

Interestingly, the best global classifier for speech under stress (70.76% using
10 parameters on qualified events, see Tab. 5.7 on page 147) performs on par
with the best global classifier fo emotional speech (70.32% using 16 parame-
ters, see Tab. 5.3 on page 134).

When we compare the best-performing parameter sets for both Emo-DB
and IEM-PSD data, different pictures emerge for speaker-specific and for
global classifiers. While the “best sets” for speaker-specific classification in
the emotional speech domain are just half as big as their speech-under-stress
counterparts, the opposite is true for the parameter sets for global classifica-
tion. A possible conclusionwould be that emotional expression is, in general,
more speaker-specific than stress responses are — at least regarding the ver-
bal reaction.

While the speaker-specific parameter sets for Emo-DB data show clear fo-
cuses towards one or the other category of speech features (melodic, rhyth-
mic, or paralinguistic), the speaker-specific parameter sets for IEM-PSD are
very diverse, probably due to the big size of most of the “best sets”. However,
the global sets for both databases have a union set of 5 parameters, which is,
after all, half of the best-performing set for the speech-under-stress data.

Oneunambiguous result of these investigations is that a smaller set of relative
parameters yields higher classification accuracies than a larger set of absolute
parameters. Thiswas expected in advance, because it is an open secret in lan-
guage research that individual differences in speaking style between speak-
ers usually exceed global differences in speaking style under different condi-
tions.
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6. Summary

In this thesis, I havepresenteda concept for the calculationof 27prosodic and
paralinguistic parameters to describe the way we speak in an objective way.
A consistent methodology has been implemented which builds on a theoret-
ical model of “prosody” and extends it by the use of auditive variables which
take humanperception of pitch, loudness, and timing into account. A central
aim of my work was to bring together diverse approaches and insights from
different fields of research, including linguistics, speech-language pathology,
digital signal processing, music information retrieval, andmachine learning;
I hope to have met my own claims by considering all kinds of different ap-
proaches and by providing clear descriptions and explanations throughout
this thesis.

Onmy journey from the raw signal as capturedby amicrophone to the several
high-level parameters which describe certain qualities of melody, rhythm, or
timbre, some innovations had to be made in order to bridge one or the other
divide. A self-tuning algorithm for the blind detection of syllable boundaries
hasbeendevelopedwhichautomatically detects the (mostprobable) number
of syllables in an utterance and which furthermore considers the perceived
syllable lengthas a relevantparameter fordurationperception. Anothernovel
contribution ismadeby thepresented technique to derive a continuous pitch
contour from a series of fundamental frequency values and by a rule-based
method to determine the pitch of a syllable. Finally, the musical interpre-
tation of speech rhythm prompted me to force the perceptual centers of the
syllables into a regular rhythmic grid, which is also an original contribution.
Some of the presented parameters are already known, others are commonly
evaluated manually, but not automatically, and again others are my own in-
vention.

These prosodic and paralinguistic parameters have further been investigated
regarding their ability to differentiate between different emotional states or
different levels of cognitive stress. The latter has been made possible by
the creation of a speech database with speech under stress in the cockpit,
which features professional airline pilots in a class D full flight simulator.
This database is publicly available free of charge for academic research pur-
poses and will hopefully add value to the scientific community.
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6. Summary

The classification results show that speechparameters are indeed suitable in-
dicators of both emotional state and stress level. We experience immanent
limitations due to individual differences in speaking style aswell as strongpa-
rameters which appear in all best-performing parameter sets. As presumed,
relative changes in speech parameters with respect to a speaker’s “normal”
speaking style are more meaningful than absolute values. A remarkable fact
is that, for the classification of speech under actual stress, speaker-specific
classifiers outperform the well-established parameters of heart rate variabil-
ity.

“Es war sehr schön, es hat mich sehr gefreut.”

—Franz Joseph I of Austria, 1830-1916
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A. Supplemental Figures and Tables

A.1. Prominence Regression

Distribution of Labelled Prominence Values in Emo-DB

The following figures show the distribution of labelled prominence values
per syllable for all 10 different sentences from the Emo-DB database, over all
speakers and emotions, as Box-Whisker plots.

The bold line shows the median (which is the 2nd quartile or the 50% per-
centile), the box represents the range between the 1st (25%) and the 3rd (75%)
quartile, and the whiskers indicate the complete range of the data without
outliers.

The ordinate shows values inEmo-DB notation from0 to 3, which correspond
to the prominence levels [0..30] in the linguistic standard notation. The dot-
ted line at 12.5 marks the soft threshold for the fuzzy regression analysis.
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Figure A.1.: Labelled prominence values from Emo-DB for sentence 1.'
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Figure A.2.: Labelled prominence values from Emo-DB for sentence 2.
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Figure A.3.: Labelled prominence values from Emo-DB for sentence 3.
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Figure A.4.: Labelled prominence values from Emo-DB for sentence 4.
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A.1. Prominence Regression
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Figure A.5.: Labelled prominence values from Emo-DB for sentence 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Syllable Index

0

10

20

30

P
ro

m
in

en
ce

 L
ab

el
s

Distribution of Prominence Labels for Sentence #6

Figure A.6.: Labelled prominence values from Emo-DB for sentence 6.
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Figure A.7.: Labelled prominence values from Emo-DB for sentence 7.
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Figure A.8.: Labelled prominence values from Emo-DB for sentence 8.
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Figure A.9.: Labelled prominence values from Emo-DB for sentence 9.
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Figure A.10.: Labelled prominence values from Emo-DB for sentence 10.
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A.1. Prominence Regression

Regression Accuracies for Speaker-Speci�c and Global Models
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A. Supplemental Figures and Tables

A.2. Emo-DB Parameter Selection
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Figure A.11.: Sequential forward parameter selection for Emo-DB using absolute pa-

rameter values. Upper plot: parameters included in the evaluation set are

marked black. Lower plot: correctly classi�ed ratio (CCR) for SVM classi-

�cation with the parameter set of the current selection step.
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A.2. Emo-DB Parameter Selection
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Figure A.12.: Sequential backward parameter selection for Emo-DB using absolute pa-

rameter values. Upper plot: parameters included in the evaluation set are

marked black. Lower plot: correctly classi�ed ratio (CCR) for SVM classi-

�cation with the parameter set of the current selection step.
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A. Supplemental Figures and Tables
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Figure A.13.: Sequential forward parameter selection for Emo-DB using relative param-

eter values w.r.t. average parameter values. Upper plot: parameters in-

cluded in the evaluation set are marked black. Lower plot: correctly classi�ed

ratio (CCR) for SVM classi�cation with the parameter set of the current

selection step.
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A.2. Emo-DB Parameter Selection
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Figure A.14.: Sequential backward parameter selection for Emo-DB using relative pa-

rameter values w.r.t. average parameter values. Upper plot: parameters

included in the evaluation set are marked black. Lower plot: correctly classi-

�ed ratio (CCR) for SVM classi�cation with the parameter set of the current

selection step.
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Figure A.15.: Sequential forward parameter selection for Emo-DB using relative param-

eter values w.r.t. the �neutral� emotion. Upper plot: parameters included

in the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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A.2. Emo-DB Parameter Selection
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Figure A.16.: Sequential backward parameter selection for Emo-DB using relative pa-

rameter values w.r.t. the �neutral� emotion. Upper plot: parameters in-

cluded in the evaluation set are marked black. Lower plot: correctly classi�ed

ratio (CCR) for SVM classi�cation with the parameter set of the current

selection step.
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Figure A.17.: Sequential forward parameter selection for all selected events from IEM-

PSD using absolute parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.18.: Sequential backward parameter selection for all selected events from IEM-

PSD using absolute parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.19.: Sequential forward parameter selection for all selected events from IEM-

PSD using relative parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.20.: Sequential backward parameter selection for all selected events from IEM-

PSD using relative parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.21.: Sequential forward parameter selection for all quali�ed events from IEM-

PSD using absolute parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.22.: Sequential backward parameter selection for all quali�ed events from IEM-

PSD using absolute parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.23.: Sequential forward parameter selection for all quali�ed events from IEM-

PSD using relative parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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Figure A.24.: Sequential backward parameter selection for all quali�ed events from IEM-

PSD using relative parameter values. Upper plot: parameters included in

the evaluation set are marked black. Lower plot: correctly classi�ed ratio

(CCR) for SVM classi�cation with the parameter set of the current selection

step.
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A.4. Parameter Variation Studies

Syllable Segmentation

Three parameters were evaluated in a full-factorial way with respect to the
correct number of syllables detected by the algorithm:

Parameter Values

MinimumNucleus Length [20, 30, 40, 50, 60, 70, 80] ms

Minimum Syllable Length [40, 60, 80, 100, 120, 140] ms

MA Filter Span [100, 150, 200, 250] ms

Table A.3.: Parameter values tested for syllable segmentation.

The following figure shows the average number of deviations between esti-
matedand labeled syllables for eachof the168possible combinationsof these
parameters:

Average Deviation in No. Syllables Detected
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Figure A.25.: Average number of deviations between estimated and labeled syllables over

all speakers for di�erent parameter combinations.

The best parameter combination (min. nucleus length = 50ms, min. syllable
length = 100ms,MA span = 200ms) results in an average error of 1.83 syllables
per utterance.

Investigating the average error with the best parameter combination for each
single speaker or each single emotion, respectively, reveals that there are no
significant effects specific to the speakers or the emotions; the specific best
result is an average deviation of 1.5 syllables per utterance, as shown in Fig.
A.26 and Fig. A.27.
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Figure A.26.: Average number of deviations between estimated and labeled syllables with

optimum parameter combination for di�erent speakers.
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Figure A.27.: Average number of deviations between estimated and labeled syllables with

optimum parameter combination for di�erent emotions.
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