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Abstract

We often �nd audio recordings in which there is too much reverberation, but still the
recording is important enough to require improvement and post processing to reduce
the reverberation. There are already a few methods for so called dereverberation of
audio recordings especially for speech signals with particularly varying dereverbera-
tion quality depending on di�erent aspects of reverberation. All of them are based
on the same fundamental blind deconvolution problem in which neither the original
signal nor the impulse response of the system is known. This thesis discusses a
method that combines di�erent approaches based on homomorphic deconvolution
and spectral subtraction de�ned by statistical and power spectral analysis. Opti-
mal settings and algorithmic combinations are found by technical and perceptual
evaluation of sound quality and reverberation level.

Zusammenfassung

In gängigen Tonaufnahmen können bedingt durch die Aufnahmesituation störende
Anteile an Nachhall und frühen Re�exionen enthalten sein, die während der Auf-
nahme nicht immer vermeidbar sind. In diesen Aufnahmen ist es wünschenswert,
die störenden Raumein�üsse bestmöglich durch eine Audionachbearbeitung zu un-
terdrücken. Hierfür gibt es in der Literatur bereits verschiedene Ansätze, welche
sich vor allem auf Sprachsignale spezialisiert haben. All diesen Ansätzen liegt das
Problem zugrunde, dass weder das Originalsignal, noch die Impulsantwort des Auf-
nahmesystems bekannt sind. In dieser Arbeit wird die Kombination verschiedener
Ansätze basierend auf homomorpher Entfaltung, statistischen Analysen und Nach-
hallschätzung untersucht und daraus ein kombinierter Algorithmus zur Nachhal-
lkompensation entwickelt. Technische und perzeptive Messverfahren zur Bestim-
mung der Tonqualität und Nachhall dienen schlieÿlich zur Optimierung des Algo-
rithmus.
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Chapter 1

Introduction

In many sound recording conditions such as interviews, lecture recordings, telecon-
ferencing systems, or live recordings, the recorded signals are often corrupted by
reverberation. Depending on the physical parameters of a recording room, such as
size and absorption coe�cients, reverberation occurs due to multi-path propagation
of the sound source. Not only the clean speech signal is recorded over a microphone,
but also source parts re�ected by the walls which cause the reverberation. The main
perceptual e�ects of reverberation are the coloring of the source signal and an echo.
In most cases these e�ects are disturbing and unwanted. It is desirable to remove
these reverberating parts from the recording in a post-processing step. Due to the
time dependent variation of the relative strength of reverberation compared to the
desired signal, it is impossible to suppress such e�ects by manually parameterizing
equalizers. Thus, it is necessary to develop an algorithm that is able to suppress or
cancel out reverberation. The suppression or cancellation of reverberation is called
dereverberation. The following chapters introduce an overview of current derever-
beration techniques and describe the proposed algorithm in detail.

1.1 System Description

The e�ect of reverberation is caused by a superposition of a direct sound wave
and its acoustic re�ections in the room (see Figure 1.1). The time needed by the
direct sound wave to travel from the speaker to the receiver is de�ned by tD, which
corresponds to the path depicted as the arrow in the middle of Figure 1.1. On the
other hand sound waves which take the re�ection path over the walls need more
time (i.e. tR > tD) until they reach the microphone because of traveling trough the
longer path over the walls. In theory, there is an in�nite set of sound propagation
paths of di�erent lengths and directions.

In terms of mathematical description a multi-path propagation with a room impulse
response (RIR) can be modeled so, that a reverberated signal x(t) can be seen as a
convolution of the clean source signal s(t) and the RIR h(t) plus noise n(t).
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=  

Figure 1.1 � Multi-path propagation of the source sound wave (represented by a
speaker) traveling to the receiving microphone.

x(t) = s(t) ∗ h(t) + n(t) (1.1)

The RIR is divided into a time period where early re�ections occur and another
period where late reverberation takes place. The late reverberation is a di�use
sound �eld with exponentially decaying sound energy as shown in Figure 1.2.
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Figure 1.2 � General RIR representation with direct part hdir, early re�ections
hearly and late reverberation hlate.
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1.2. Overview of Dereverberation Techniques

Thus, if we have complete knowledge of the room impulse response of the system at
every time instance t, the source signal s(t) might be fully reconstructed. However,
in most cases neither the RIR nor the clean speech signal are known. Only the
reverberated signal x(t) is available. In general this circumstance is called the blind
deconvolution problem. Possible ways to calculate the original speech signal is to
estimate the RIR or to de�ne spectral gain functions that make assumptions on the
statistical behavior of reverberation. An overview of such techniques is outlined in
the next section.

1.2 Overview of Dereverberation Techniques

There are already many works that present di�erent dereverberation techniques.
However, it is often very hard to �nd an appropriate overview due to the discrepancy
between various approaches. It is not meaningful to describe all of the methods in
detail, although there are some clearly de�ned di�erences between some techniques.
One way to classify dereverberation algorithms is to split them into reverberation
cancellation and reverberation suppression.

Reverberation Cancellation If the RIR is known, the clean speech signal can
be fully reconstructed under certain conditions. Algorithms of this kind try to
completely cancel out the in�uence of the reverberation by directly calculating the
room impulse response. As outlined in the previous section, in most cases the RIR
is unknown and has to be approximated with assistance of existing speech models.
Reverberation cancellation methods using homomorphic deconvolution are described
in [1], [2] and [3]. Also harmonicity based dereverberation (HERB) [4], [5] and [6]
is used to cancel out reverberation. Inverse �ltering by Bussgang Method [7] could
also be treated as a cancellation technique. One of the problems of such methods is
that due to the calculation of the amplitude and phase of the RIR, these algorithms
are sensitive and prone to phase errors even at low levels of dereverberation.

Reverberation Suppression On the other hand there are methods that use sta-
tistical models and the general characteristics of speech signals. The levels of the
reverberant parts of the signal are estimated and suppressed subsequently by us-
ing a spectral gain function or an appropriate �lter instead of directly calculating
an impulse response. Although it is not possible to completely cancel out the re-
verberation of a signal using these algorithms, they are more robust to pre-ringing
and annoying musical noise. Furthermore, inaccuracies of human hearing such as
frequency and time resolution could be used as a motivation of suppression and to
regard reverberation cancellation as being unnecessary. In reverberation suppres-
sion, algorithms based on spectral subtraction are common [8], [9], and [10] which
suppress reverberation in the short-term spectral domain. Therefore, estimating re-
verberant parts is done by using a simple reverberation model [11] or higher order
statistics [12].
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Another important classi�cation of such algorithms is de�ned by the number of
channels. We can distinguish between single-channel and multi-channel applications.

Single-Channel Dereverberation As the name suggests, only one channel of
a reverberant signal is assumed. This is a comprehensive method because it uses
the properties of only one reverberated signal to calculate the reverberant parts and
works therefore also for multi-channel applications. Hence, it is interesting to �nd
an appropriate Single-Channel dereverberation algorithm. On the other hand it is
comparably di�cult to estimate an impulse response or reverberation from a mono
signal as opposed to multi-channel signals. Such Methods are used for example
in [13].

Multi-Channel Dereverberation In multi-channel systems such as stereo or
ambisonic, most of the dereverberation techniques employ cross-correlation between
channels to extract more information about the signal and thus more information
about reverberant parts or the RIR. Hereby, the amount of available information
increases by an increasing number of channels and therefore multi-channel derever-
beration in general leads to better results. In ambisonic systems, beamforming [10]
is an appropriate technique to determine the direction of the source signal increas-
ing the ratio between direct sound and reverberation. The main problem of such
methods is computational complexity and the fact that most of the recordings are
still single-channel or stereo recordings.

The last clearly de�ned classi�cation of dereverberation algorithms can be done
by de�ning in which time span of the room response the dereverberation becomes
e�ective. There are methods that are only focusing on suppressing late reverberation
and such limited to early re�ections. Independently of the target segment of the
room response, there are algorithms which employ reverberation suppression and
algorithms which employ reverberation cancellation. The usage of multi-channel
or single-channel is not bounded to a particular segment of an impulse response.
Still, a well-de�ned goal for which part of reverberation the algorithm shall become
e�ective can be a decisive design question.

Figure 1.3 shows a possible classi�cation of blind dereverberation techniques. Its left
half presents reverberation suppression algorithms that try to suppress estimated re-
verberant parts of speech. The right half of the �gure shows algorithms that directly
estimate the room impulse response. Spatial processing can apply either suppression
or cancellation methods after employing e.g. a beamforming algorithm. Homomor-
phic deconvolution can also be achieved by suppression or cancellation techniques
as shown in Chapter 2. The next Section describes which kind of algorithms are
discussed in this work.
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1.3. Proposed Dereverberation Algorithm

1.3 Proposed Dereverberation Algorithm

Most of the dereverberation algorithms are focusing on suppressing late reverber-
ation. Just a few approaches try to suppress early re�ections. However, in many
recordings early re�ections have a large in�uence on coloring the sound and ambient
e�ects. Therefore, we focus on suppressing early re�ections in this work. Addition-
ally late reverberation suppression is also considered for evaluation.

The target group for the proposed algorithm are in general speech signals from
i.e. radio or documentary recordings. These recordings are often recorded by one
microphone. We are not able to assume a multi-channel setting for every recording.
Therefore, it is suitable to develop an algorithm with single-channel dereverberation
functionality. This also works for multi-channel systems and can be extended and
improved by i.e. a beamformer afterwards.

In Chapter 2 two dereverberation approaches that employ cepstrum based techniques
to estimate reverberation are outlined. In Chapter 3, a reverberation suppression
method based on spectral subtraction is presented. The algorithms are reviewed
and the most suitable algorithm will be tested in Chapter 4 for evaluation.

Reverberation Suppression Reverberation Cancellation

Spatial
Processing

Homomorphic
Deconvolution

Spectral Subtraction

LP Enhancement

Temporal Filtering

HERB

Bussgang Methods

Blind Deconvolution

Figure 1.3 � Overview of dereverberation techniques
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Chapter 2

Homomorphic Deconvolution

Homomorphic deconvolution transforms multiplicative components into additive
components and uses linear �ltering techniques in the log-spectral domain for the
deconvolution procedure. It is used to separate the source signal from the room
impulse response. In the log-spectral domain, the real cepstrum and the complex
cepstrum are distinguished. While the real cepstrum is calculated only by the mag-
nitude spectrum, the complex cepstrum also includes phase information but comes
along with a certain computational complexity. This Chapter outlines two well-
known homomorphic deconvolution approaches using the cepstrum technique for
speech dereverberation.

2.1 Real-Cepstrum Based Dereverberation

In theory speech can be described as a combination of source excitation signal (i.e.
an impulse for voiced or white noise for unvoiced sounds) and an anechoic vocal tract
�lter. While the vocal tract �lter represents the formant frequencies and produces
a spectral envelope, the excitation signal exhibits quasi-periodic harmonic ripples
which represent the fundamental frequency. This means, that the vocal tract �lter
corresponds to "slowly changing" and the excitation signal to "rapidly changing"
spectral values. The real-cepstrum is able to separate these values by an inverse
Fourier transform of the log magnitude spectrum. It is given by

ĉx(t) =
1

2π

∫ π

−π
ln[|X(ω)|]ejωtdω, (2.1)

where X(ω) is the spectrum of a signal x(t) with frequency ω. In terms of discrete
signal processing the spectrum X(k) of a discrete signal x(n) is de�ned by

X(k) =
N−1∑
n=0

x(n)e−2πj k·n
fs·N (2.2)
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2.1. Real-Cepstrum Based Dereverberation

with frequency bin index k, N as signal length and fs as sampling frequency. Thus,
we can also write down the discrete real-cepstrum ĉx(q) of x(n) with quefrency bin
index q by

ĉx(q) = iDFT [ln[|X(k)|]] . (2.3)

For example, Figure 2.1 shows the real-cepstrum of a female speech signal. The
cepstral coe�cients located around the origin correspond to the vocal tract �lter
and the formant frequencies. The peak in the higher quefrency range represents the
fundamental frequency f0. It is therefore possible to detect speech components by
analyzing these coe�cients and the cepstral peak.
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Figure 2.1 � Real-cepstrum of simulated female speaker saying "aaa"

2.1.1 Cepstral Liftering

Assuming that a reverberated signal is given, the real-cepstrum is corrupted by re-
verberation. However, there are regions in the real-cepstrum where speech is not
present but reverberation can be. The idea of the real-cepstrum based dereverbera-
tion is to �lter out certain regions in the cepstral domain. In terms of the cepstrum
this is called liftering. A simple way to do this is to extract the coe�cients located
around the origin and to suppress the rest of the cepstrum except the range around
the peak that represents f0. An appropriate lifter can be de�ned as a real-valued
quefrency-depended gain function G(q) and is used as a simple multiplication as

ĉy(q) = ĉx(q) ·G(q). (2.4)
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An example for a gain function G(q) as lifter is shown in Figure 2.2.
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Figure 2.2 � Real-cepstrum of simulated female speaker saying "aaa" with lifter
gain function G(q) at a sampling frequency of fs = 44.1kHz

The peaks between the origin and the f0 range rely on the e�ects of reverberation
that are suppressed by the cepstral lifter and ĉy(q) can be used as an initial point
of dereverberation.

2.1.2 Signal Reconstruction

After cepstral liftering, the reconstruction of a dereverberated signal y(t) is the last
mandatory task. Since the computation of the real-cepstrum according to Equation
(2.3) does not include phase information, the original phase ofX(k) for the spectrum
Y (k) has to be employed to reconstruct the signal. Therefore, the spectrum of the
dereverberated signal y(t) is de�ned by

Y (k) = |Y (k)| · ejarg[X(k)], (2.5)

where the magnitude spectrum |Y (k)| is calculated by the inverse real cepstrum of
ĉy(q) through

|Y (k)| = eDFT[ĉy(q)]. (2.6)

An inverse Fourier transformation leads then to the dereverberated signal
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2.2. Complex-Cepstrum Based Dereverberation

y(n) = iDFT
[
eDFT[ĉy(q)] · ejarg[X(k)]

]
(2.7)

= iDFT
[
eDFT[ĉy(q)]+jarg[X(k)]

]
. (2.8)

As already shown, the original phase has to be used for signal reconstruction. Since
the phase is not taken into account and una�ected by the algorithm, the e�ect of
this simple lifter is low. In particular, if more complex impulse responses are con-
sidered, the reverberation also in�uences the cepstral coe�cients around the origin.
Because of that a more accurate and detailed model to achieve better reverberation
suppression is needed. The next Section discusses a dereverberation technique based
on the complex cepstrum.

2.2 Complex-Cepstrum Based Dereverberation

In the time domain, a reverberated speech signal can be described as the convolution
of a clean speech signal and an impulse response assuming insigni�cantly small noise.
This convolution converts into a multiplication in the spectral domain. Further, if
the complex cepstrum of a reverberated spectrum is calculated, the multiplication
turns into a summation in the cepstral domain due to the logarithm in the spectral
domain. The complex cepstrum x̂(t) of a signal x(t) can be calculated as

x̂(t) =
1

2π

∫ π

−π
ln[X(ω)]ejωtdω, (2.9)

and in terms of discrete signal processing

x̂(q) = iDFT [ln[X(k)]] . (2.10)

If the complex logarithm ln[X(k)] of the spectrumX(k) de�ned by the multiplication
of S(k) and H(k) is considered, the multiplication turns into a summation.

ln(DFT[x(n)]) = ln[X(k)] (2.11)

ln[X(k)] = ln[S(k)H(k)] (2.12)

= ln[S(k)] + ln[H(k)]. (2.13)

After computing the complex cepstrum ŝ(q) of a clean speech spectrum S(k) and
the complex cepstrum ĥ(q) of the RIR spectrum H(k) with Equation (2.10), the
reverberated speech signal x(n) can be written in the cepstral domain:

x̂(q) = iDFT [ln[S(k)]] + iDFT [ln[H(k)]] (2.14)

= ŝ(q) + ĥ(q). (2.15)
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Chapter 2. Homomorphic Deconvolution

Now by complete knowledge of the complex cepstrum of the impulse response, the
original clean speech complex cepstrum ŝ(q) can be reconstructed by simply sub-
tracting ĥ(q) from x̂(q). After transforming the complex cepstrum of x̂(q) back into
the time domain by computing the inverse complex cepstrum de�ned by

s(n) = iDFT
[
eDFT[ŝ(q)]

]
, (2.16)

the original clean speech signal s(n) is reconstructed. But as shown in the previous
chapter, a room impulse response h(n) is not known in general, so h(n) has to be
approximated using cepstrum-based estimation techniques.

2.2.1 RIR Representation in the Cepstral Domain

As outlined in the previous Chapter, we are mainly interested in early re�ections
of the room impulse response. Early re�ections are represented by delayed peaks in
the time domain. The complex cepstrum of an impulse response also shows early
re�ections in the form of peaks at the corresponding quefrency. For Example Figure
2.3 shows a simple impulse response h(n) with direct sound impulse δ(n) at time
sample n = 0 and one simple re�ection impulse after n = n0 samples and the
corresponding complex cepstrum. The alternating peaks in the complex cepstrum
naturally arise from the computation due to power series expansion of the logarithm

h(n) = δ(n) + aδ(n− n0) (2.17)

H(k) = 1 + ae−jkn0 (2.18)

Ĥ(k) = ln[1 + ae−jkn0 ] (2.19)

= ae−jkn0 − a2

2
e−2jkn0 +

a3

3
e−3jkn0 − ... (2.20)

ĥ(q) = aδ(n− n0)− a2

2
δ(n− 2n0) +

a3

3
δ(n− 3n0)− ... (2.21)

If the complex cepstrum of a signal convolved with that impulse response is com-
puted, the peaks arise at n0 because of the summation described in Equation (2.15).
As re�ections occur mainly in the form of peaks in the cepstral domain and inter-
fered additively with the complex cepstrum of a signal, the subtraction of that peaks
would lead to the complex cepstrum of the dereverberated speech ŷ(q) with

ŷ(q) ≈ x̂(q)−Hp(q), (2.22)

where Hp(q) is a set of cepstral peaks detected by a simple peak picking algorithm
with threshold Λ(q) de�ned by

Hp(q) =

{
x̂(q), if x̂(q) > Λ(q)

0, otherwise
. (2.23)
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(b) Complex Cepstrum of RIR

Figure 2.3 � Impulse response and corresponding complex cepstrum of a simple
comb �lter with n = 100 =̂ 2.2 ms @44.1 kHz
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Chapter 2. Homomorphic Deconvolution

Figure 2.4 illustrates the complex cepstrum of a short speech segment x(n) con-
volved with the simple RIR h(n) from above. The red marked cepstral peaks show
the additivity between ĥ(q) and x̂(q) and mainly represent the RIR. The peaks are
clearly detectable and can be subtracted with Equation 2.22. An inverse transfor-
mation of the peak subtracted cepstrum leads to a reconstructed, dereverberated
signal, but a perfect reconstruction is not possible because the speech fraction of
such a complex cepstrum is not known. For a single quefrency bin qp where a peak
was found, the instance of Hp(qp) is de�ned as

Hp(qp) = ŝ(qp) + ĥ(qp). (2.24)

It is therefore not detectable how strong the in�uence of ŝ(qp) is within ĥ(qp) since

we do not know the complex cepstrum of ŝ(qp) and ĥ(qp). Hence, if a more complex
RIR is assumed, it is often di�cult to �nd such clearly pronounced peaks in the
complex cepstrum due to a insigni�cantly low amplitude or the superposition with
speech in the cepstral domain.
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x̂(q)
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Figure 2.4 � Complex cepstrum of a single speech segment x̂(q) convolved with a
simple RIR and corresponding cepstral peaks Hp(q)

Further, peaks in the complex cepstrum can also correspond to the speech itself
especially in the range around q = 0 as shown in Figure 2.5. These problems make
it impossible to detect the RIR. However, in terms of a frame-based signal processing,
statistical independences of speech can be used to estimate the RIR which takes us
a step toward to the so called cepstral mean subtraction.
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(a) RIR in the time domain

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Quefrency in ms

N
or

m
al

iz
ed

 A
m

pl
itu

de

 

 
Speech
RIR

(b) Complex Cepstrum of RIR and speech

Figure 2.5 � Meeting room [14] RIR and the corresponding complex cepstrum and
the complex cepstrum of a single speech segment
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Chapter 2. Homomorphic Deconvolution

2.2.2 Cepstral Mean Subtraction

By frame-based signal processing, a short time Fourier transformed segment of re-
verberated speech X(k, l) is de�ned, where k is the frequency bin index and l the
frame index. By computing the complex cepstrum of X(k, l) using Equation (2.10),
x̂(q, l) is obtained. As speech is a non-stationary stochastic process, it is assumed
that values in the frequency and vice-versa in the quefrency domain of the signal
change rapidly in time and may be uncorrelated to other frames in a certain range.
On the other hand a RIR is relatively time-invariant, if the speaker and the mi-
crophone are �xed or just slowly changing in time (e.g. by a moving speaker or
microphone in the room). Thus, the RIR frames are highly correlated to others.

By computing the mean of several reverberated signal frames, the low correlation of
speech will approximately average to a zero mean while the highly correlated RIR
has its peaks in the cepstrum at the same quefrency bins. Under these circumstances,
the following assumption for the cepstral mean ĥ(q, τ) for a time instance τ can be
made:

ĥ(q, τ) =
1

L
·
τ+L−1∑
l=τ

x̂(q, l), (2.25)

where L is the number of frames used for the cepstral mean. The higher L, the
higher is the probability that the cepstral mean of a reverberated signal converges
to the complex cepstrum of the RIR. But under the assumption of a time-varying
RIR also the cepstral coe�cients of the RIR are uncorrelated and undergo the risk
of a zero mean. The goal is to �nd an appropriate number of frames which yield to
the best approximation of the RIR complex cepstrum whereas

ĥ(q, τ) ≈ ĥ(q, l) (2.26)

holds. According to the above Equation, an estimation of the impulse response in
the cepstral domain is given and the peak picking technique described in Section
2.2.1 can be used for frame-wise subtraction of the cepstral peaks with Equation
(2.22) caused by the RIR. This leads to an estimation of the complex cepstrum
of the dereverberated speech ŷ(q, l). By inverse transformation of ŷ(q, l) back into
the time domain with Equation (2.16), the dereverberated speech signal can be
reconstructed.

2.2.3 Phase Unwrapping

For the complex cepstrum and frame-based processing, there are a few problems that
have to be considered. First, any computation of the complex cepstrum requires
an e�cient phase unwrapping algorithm for a correct computation of the phase
information within the complex cepstrum [15]. The phase of a signal spectrum might
jump on the bounds of π and −π. By computing the complex cepstrum without
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2.2. Complex-Cepstrum Based Dereverberation

phase unwrapping, the data is corrupted by these jumps in the spectral domain.
While exact phase unwrapping algorithms are of high computational cost, e�cient
ones cannot compute the exact unwrapped phase for the inverse transformation.
Because of that, there are already small errors due to the computational procedure.
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Figure 2.6 � Complex cepstrum of a single speech segment with the wrapped phase
compared to di�erent phase unwrapping algorithms

Figure 2.6 shows di�erent e�cient algorithms [16] for phase unwrapping compared
to wrapped phase complex cepstrum with a speech segment as input. The Schafer
algorithm [16] constructs the unwrapped phase by adding and subtracting 2π when
the di�erence between adjacent phase spectrum values increases beyond a given
threshold. RC-unwrap in the above code segment is a special version of the Schafer
algorithm that subtracts a straight line from the phase. It can be seen, that the
cepstral peaks �uctuate in bin index and amplitude wherefore the RIR peaks by the
mean computation are more di�cult to detect.

2.2.4 Cross-Talking due to STFT Based Compuation

There is another, more important problem that can corrupt the cepstral coe�cients
to non-causal e�ects. By computing the signal frame-wise, the windowing and over-
lap technique is employed to get the frames. Assuming a constant signal segment
subdivided into frames with no pauses in it, a re�ection cross-talk between two
frames is observed. This means for example that the �rst samples of frame l contain
re�ections of the last samples of frame l − 1 Figure 2.7 visualizes this e�ect.
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Figure 2.7 � Illustration of cross-talking re�ections of the previous frame
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Figure 2.8 � Cepstral mean ĥ(q, τ) over τ = 7 s of speech with corresponding
cepstral peaks Hp(q)
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2.2. Complex-Cepstrum Based Dereverberation

These re�ections appear non-causal because they occur although their excitation lies
in the previous frame. And they can be lowly correlated to the signal of the current
frame. This e�ect also appears in the cepstral domain and causes non-symmetric
peaks in the anti-causal complex cepstrum with quefrency bins −q as shown in
Figure 2.8.

Additionally causal peaks which correspond to the RIR are corrupted by the over-
lapping re�ections. By subtracting these peaks in the cepstrum and transforming it
back into the time domain, non-causal time shifts within the signal are produced.
Thus it might be interesting to �nd appropriate frames where no overlapping re�ec-
tions take place.

2.2.5 Cepstral Mean by Speech Segmentation

An approach for �nding appropriate signal frames determines a segment-based anal-
ysis of the speech by detecting its voice activity [3]. Thereby, the problem of over-
lapping re�ections as described before can be reduced. One idiosyncrasy of speech is
that it contains many pauses where a speaker has to draw breath. These parts with
no or insigni�cantly small signal amplitudes are used for the segmentation. If the
algorithm only uses segments as frames following a pause, there are no re�ections of
a previous frame which can corrupt an actual frame. Figure 2.9 shows an example
for such a voice activity segmentation of speech.
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Figure 2.9 � Segmentation of speech

With such a segment, the mathematical model of the previous Section �ts, and only
causal cepstral peaks appear in the complex cepstrum of the signal frame.
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Therefore, it is possible to detect a RIR by computing the cepstral mean

ĥs(q, τ) =
1

|L|
·
∑
lεL

ŷ(q, l), (2.27)

where L is a set of frames around the time period τ where the segmentation model
�ts. One problem of these technique is that the frame-wise subtraction is not possible
anymore because the overlapping re�ections corrupt a frame as we have seen and thus
the subtraction does only �t to the segment frames which are used for calculating
the cepstral mean. Alternatively it is possible to design an adaptive digital �lter
g(n, τ) consisting of linear-phase all-pass components

g(n, τ) = −ĥs(q, τ). (2.28)

The accuracy of such a segmental cepstral mean also depends on the number of
frames used. Obviously the active speech is much more present then pauses, so
the number of appropriate segments decreases compared to the cepstral mean sub-
traction. If the number of usable frames within a time period τ is too small, the
correlation between frames may be too high for an appropriate estimation of the
RIR. It is therefore not robust enough for time-varying systems due to the very low
amount of relevant frames.

2.3 Discussion

Unfortunately the results of this approach and all its techniques are not easily ap-
plicable even if the theory �ts for appropriate reverberation cancellation. Compu-
tational complexity and the high sensitivity of the phase to wrapping, segmentation
and noise make it di�cult to use the complex cepstrum as a dereverberation method.
By contrast, the real cepstrum might lead to an audible dereverberation. Still, its
e�ect is too small to achieve reasonable results it in practical systems. Additionally,
more complicated impulse responses than a simple comb �lter have many re�ections
with low amplitude and some of them may be in the region around cepstral speech
coe�cients, some of them in the anti-causal part of the cepstrum. The sensitivity
of the homomorphic deconvolution led to an investigation of another approach.
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Chapter 3

Spectral Subtraction

In the previous Chapter, the underlying assumption was that reverberated signals
can be expressed as a convolution of the impulse response of a system and the source
signal plus noise. In this Chapter reverberation will be treated like a noisy part of
the recorded speech. Thus it can be seen as an additive component so that the
reverberated signal x(n) can be expressed as

x(n) = s(n) + r(n) + v(n), (3.1)

where r(n) is the so called residual reverberation and s(n) and v(n) the given source
signal and noise. As an advantage, the in�uence of the generally time-varying RIR
can be estimated for each frame instead of estimating one impulse response over
several frames. In the spectral domain, in terms of frame-based processing, it can
be calculated as

X(k, l) = S(k, l) +R(k, l) + V (k, l). (3.2)

The main idea of spectral subtraction is to jointly reduce reverberation and noise
with a real valued gain function G(k, l) in the spectral domain. Hence, the clean
speech spectrum is estimated as

Ŝ(k, l) = G(k, l) ·X(k, l). (3.3)

Transforming Ŝ(k, l) back into the time domain leads to the dereverberated speech
signal

ŝ(n) = iDFT(Ŝ(k, l)). (3.4)

This Chapter introduces an iterative reverberation suppression scheme based on
spectral subtraction, according to [10].
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3.1 System Overview

The major challenge is to �nd an appropriate gain function to jointly achieve derever-
beration and noise reduction. The gain function has to minimize the error between
the source signal and the dereverberated signal according to Section 3.4. Therefore,
an estimation of the power spectral densities (PSD) of the interfering reverberation
and noise has to be done. Figure 3.1 shows an overview of the proposed spectral
subtraction algorithm according to [10].
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Figure 3.1 � Schematic overview of the proposed spectral subtraction system

In general there are three main stages of the algorithm. First, an estimate of the noise
power spectral density (PSD) σ̂2

v of a reverberated input short-time spectrum X(k, l)
is calculated by a technique proposed in Section 3.2. The second stage computes
the reverberant PSD σ̂2

r of X(k, l). These two PSDs are then used to obtain the real
valued gain function G(k, l) in the last stage. The gain function G(k, l) is multiplied
with X(k, l) to obtain the dereverberated output short-time spectrum Ŝ(k, l). An
inverse short Fourier transformation reconstructs the dereverberated signal ŝ(n).
The following sections describe the main stages in detail.
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3.2 Noise Power Estimation

The noise power estimation is based on the well-known method of minimum statistics
as proposed in [17]. Instead of using a voice activity detector as in other approaches,
this algorithm tracks spectral minima at each frequency bin even during speech
activity. Additionally, an optimal smoothing parameter is determined in each frame
by minimizing a mean square estimation error criterion. Based on the statistics of
the spectral minima, a noise power estimator is de�ned.

3.2.1 Minimum Statistics

Minimum statistics (MS) is based on the observation that noise exhibits a more
stationary and lower amplitude in frequency and time compared to speech signals.
Further, the power level of a noisy signal frequently decays to the power level of
noise during speech activity whereby reverberation follows another model and is
highly correlated to speech. Thus we can derive an estimation of the noise PSD by
tracking the minimum of a noisy signal PSD. Segments of speech presence can be
bypassed because of areas of high energy. In Figure 3.1 we can see a short schematic
overview of the proposed MS-System.

 

  

 
Recursive

Smoothing

Smoothing 

Factor Update

Minimum

Tracker

Figure 3.2 � Schematic overview of the MS noise estimation approach

The smoothing factor α(k, l) is calculated based on a previous noise estimation
σ̂2
v(k, l− 1) as well as a previous instance of the smoothed periodogram Pv(k, l− 1).

This smoothing factor is then used to obtain Pv(k, l). Subsequently an estimation
of the noise power spectrum σ2

v(k, l) is performed by minimum tracking of Pv(k, l)
within a sliding window. If we use Equation (3.2) and assume that the algorithm is
robust to reverberation, we can write

X(k, l) = S(k, l) + V (k, l). (3.5)
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Taking into account that the speech energy is approximately or equal to zero in
between words or during speech pauses, it is possible to track the minimum power
with a su�ciently large sliding window. To avoid hard decision noise estimation, we
�rst consider the smoothed periodogram

Pv(k, l) = α(k, l)Pv(k, l − 1) + (1− α(k, l))|X(k, l)|2, (3.6)

where α(k, l) is the already mentioned smoothing factor. Figure 3.3 shows the
periodogram of |X(k, l)|2 as well as the smoothed periodogram Pv(k, l) and the
noise estimation σ̂2

v(k, l) within a sliding window of length TSL = 100 ms.
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Figure 3.3 � Periodogram |X(k, l)|2, smoothed periodogram Pv(k, l) and noise es-
timate σ̂2

v(k, l) for a single frequency bin k = 150

The length of the sliding window TSL is crucial for an adequate noise PSD estimation.
While too short windows might not include speech pauses to �nd a representative
minimum that describes the noise level, very long windows are not robust to changes
of the noise level. The length of the reverberation added to the speech might require
larger periods TSL to capture minimum levels representative for the noise level. For
unknown reverberation times, longer tracking windows are more robust. However,
as described in Section 3.3, only rooms with a reverberation time in the range of
0.3 ≤ T60 ≤ 0.7 s are considered. Therefore, the value of the sliding window is set
in the range of i.e. 1.5 ≤ TSL ≤ 3.0 s.
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3.2.2 Optimal Smoothing

Figure 3.3 used a constant smoothing parameter α which yields smearing the peaks
if speech is present. This can lead to an incorrect detection of the minimum inside
the sliding window and therefore to an inaccurate estimation of noise. Further, if the
noise power increases the estimated minimum is delayed due to lower discrepancy
between noise and signal level. To circumvent this issue, a time-frequency depen-
dent smoothing value α(k, l) is introduced which can be derived by minimizing the
conditional mean square error

E{(Pv(k, l)− σ2
v(k, l))

2|Pv(k, l − 1)}. (3.7)

A solution for minimizing the error criterion to get an optimal smoothing value
αopt(k, l) is outlined in [17] and can be expressed as

αopt(k, l) =
1

1 +
(
Pv(k,l−1)
σ2
v(k,l)

− 1
)2 . (3.8)

While σ2
v(k, l) is not available in practice, the true noise PSD is replaced by its

previous value σ2
v(k, l− 1). If we look at Equation (3.6) the smoothed periodogram

will run into a deadlock Pv(k, l) = Pv(k, l−1) for α(k, l) = 1. Therefore, a maximum
allowable smoothing value αmax is introduced. Further, due to the delay of the
estimation of σ2

v(k, l − 1), the true PSD in an actual frame might be either smaller
or lager than the estimated PSD. To circumvent this issue, α(k, l) is corrected by
monitoring the average short-term PSD estimate of the previous frame compared to
the average periodogram as proposed in [17]. The correction is calculated by

αc(l) = 0.7αc(l − 1) + 0.3 max(α̃c(l), 0.7), (3.9)

α̃c(l) =
1

1 +
(∑N−1

k=0 P (k,l−1)∑N−1
k=0 |X(k,l)|2 − 1

)2 , (3.10)

where the correction factor α̃c(l) is limited by an empirically estimated value αc(l).
The optimal smoothing value αopt(k, l) is corrected as

α(k, l) =
αmaxαc(l)

1 +
(
Pv(k,l−1)
σ2
v(k,l−1)

− 1
)2 . (3.11)

As a last step, a lower limit αmin was also found in [17] and is applied to increase the
performance in higher levels of non-stationary noise. The noise PSD σ2

v(k, l − 1) is
estimated by using the corrected optimal smoothing value αopt(k, l) from Equation
(3.11) for the minimum tracking in the smoothed periodogram.
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Figure 3.4 shows a noise estimation with the adaptive smoothing parameter α(k, l)
with the same scheme as in Figure 3.3.
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Figure 3.4 � Periodogram |X(k, l)|2, smoothed periodogram Pv(k, l) and noise es-
timate σ̂2

v(k, l) for a single frequency bin k = 150 with an adaptive
smoothing constant α(k, l)

Compared to Figure 3.3, the peaks are not as often false detected and the estimator
reacts more promptly to minima. The estimated noise power level σ̂2

v(k, l) does not
exhibit strong jumps and stays approximately constant over time as expected for
the true noise power level σ2

v(k, l).

There is another approach called minima controlled recursive averaging (IMCRA)
[18] that extends the MS approach with an additional rough voice activity detector
(VAD) to provide better results in estimating the noise. But the IMCRA approach
implies a higher complexity and this thesis is mainly focused on reducing reverber-
ation. Therefore, the noise estimation results of the MS approach are good enough
for our purposes.
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3.3 Reverberation Power Estimation

In this Section the reverberant part of the speech is estimated from the levels of
previous frames in the short-term power spectrum of reverberated speech. By so
called cepstro-temporal smoothing [19] we can calculate a robust estimation of the
noise-suppressed (but still reverberated) speech. This section describes the necessary
steps to obtain a reverberation power estimation.

3.3.1 Polack's Reverberation Model

As outlined in Section 1.2, the RIR consists of direct sound, early re�ections, and
late reverberation. In general the time response of reverberation can be modeled
by a decaying envelope. Polack [11] considers a time-domain model that treats the
RIR as a Gaussian stationary noise signal wg(t) multiplied by an exponential decay
rate δ

h(t) = wg(t) · e−δt for t ≥ 0, (3.12)

where the decay rate δ is related to the reverberation time T60 as

δ =
3 ln 10

T60fs
. (3.13)

Due the convolution of the clean speech signal and the RIR in the time domain, the
reverberated signal x(n) also exhibits the exponentially decaying envelope. Thus, if
we assume

σ̂2
z = σ̂2

r(k, l) + σ̂2
s(k, l). (3.14)

as the estimation of the reverberant speech PSD, reverberation can be seen as a
multiplication of previous reverberant speech PSD frames and the exponential decay.
σ̂2
z can be obtained according to Section 3.3.3 by taking the estimated noise PSD σ̂2

v

into account to exclude noisy components when calculating reverberation along this
model. According to the spectral subtraction method described in [8], an estimation
σ̂2
r(k, l) of the reverberant PSD σ2

r(k, l) can be estimated by

σ̂2
r(k, l) = e−2δTdfs · σ̂2

z(k, l − Td
Ts

), (3.15)

where Ts = M
fs

denotes the frame shift depending on the frame length M while Td
represents the time duration between the direct sound and early re�ections. While
Polack's model for a RIR �ts properly to late reverberation where the di�use sound
�eld o�ers an equally spaced decay, it is hard to predict the decay level of early
re�ections or the exact time and amplitude since it depends on the room properties
like dimensions and absorption coe�cients.
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Depending on the room dimensions Td can be set between 20 ms and 80 ms. As
we can see there is an uncertainty between the frame shift Ts and Td. With a short
frame length Ts, the minimum delay for the model Td = Ts can estimate the levels
of the earlies part of the reverberation accurately. However, short frame shift Ts
might cause an insu�ciently resolved reverberated STFT frequency.
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Figure 3.5 � Impulse response along Polack's Reverberation Model with exponen-
tial decay function

Assuming we have chosen a value for Td = 32 ms with a frame shift of Ts = 16 ms,
the frame index for reverberation estimation becomes l − Td

Ts
= l − 2. However, the

reverberation model does not only predict re�ections within one speci�c previous
frame. As we can see in Figure 3.5, several frame exhibit parts of the reverberation.
Thus, it might be suitable to take also neighboring frames like l − 1 and l − 3 into
account. According to the decay model, only the value of Td has to be adopted in
advance. Because reverberation is treated as an additive part to the noisy speech
power density, the estimation of early re�ection levels can also be additive so that
Equation (3.15) is extended to

σ̂2
r(k, l) =

I∑
i=1

e−2δTdifs · σ̂2
z(k, l − Tdi

Ts
), (3.16)

where Tdi is an element of a set Td of I assumed early re�ection i.e. Td = {32 ms, 64
ms, 128 ms}. The estimation of σ̂2

r(k, l) can be better adjusted to the reverberation
level than with a single frame shift for one speci�ed early re�ection. Figure 3.6
shows the spectrogram of a speech sample convolved with the o�ce room RIR [14]
and the corresponding reverberation estimation.
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(a) Reverberated speech
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(b) Reverberation power estimation

Figure 3.6 � Spectrograms of a reverberant speech segment and the corresponding
reverberation power level estimation
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Chapter 3. Spectral Subtraction

The initial value of the early re�ection duration time is set to Td1 = 64 ms. The
frame length is set to M = 32 ms which means, that the reverberation power level
estimate starts at frame l − 2. Thus, the spectrogram of the reverberation power
level estimation shows an attenuated version of the l − Tdi

Ts
previous reverberated

speech frames, while number of previous frames used to estimate the reverberation
power level is set to |Td| = 3.
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Figure 3.7 � Meeting room RIR and exponential decay function

Figure 3.7 shows a real RIR recorded in a meeting room [14] and the exponential
decay function of Polack's reverberation model. The illustrated RIR does not con-
sequently follow Polack's reverberation model but exhibits early re�ections at about
9 ms with a higher amplitude than than previous samples of the RIR. Only for
the �rst 5 ms, the RIR decays rapidly after the direct sound sample. To achieve
suppression of early re�ections in that range, the frame length M had to be at least
9 ms or lower which is not practical because of the low frequency resolution during
the STFT computation. Thus, in rooms with a low reverberation time such as the
meeting room with T60 = 0.23 s, the earliest re�ections cannot be suppressed in
under practical conditions. Depending on the considered room, the reverberation
model might �t better or worse.

3.3.2 Reverberation Time Estimation

As we can see from Equation (3.13), the estimated T60 determines a big part of
the reverberation power estimation. There are several approaches, for example the
maximum-likelihood approach [20], or a noise-robust estimation based on spectral
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3.3. Reverberation Power Estimation

decay distributions [21]. As announced in Section 1.3, only early re�ections or in
other words small room acoustics are interesting. Therefore, only speech samples
which were recorded in small rooms with a reverberation time in the range of 0.3 ≤
T60 ≤ 0.7 s s are analyzed.

To investigate the in�uence of T60 on the dereverberation procedure, the exponential
decay function fe(Td) from Polack's reverberation model is considered. According
to Equation (3.12), fe(Td) is given by

fe(Td) = e
− 6 ln 10

T60
·Td . (3.17)

Figure 3.8 shows these exponential decay functions for di�erent T60 in the range of
0.3 ≤ T60 ≤ 0.7 s s as well as the maximum error function

emax(Td) = e−
6 ln 10
0.7 s

·Td − e−
6 ln 10
0.3 s

·Td . (3.18)

The maximum of emax(Td) is located at around 32 ms ans its value peaks at emax(32 ms) =
0.3, only. So if an estimation of T60 exhibits a discrepancy of ±0.3, the maximum
decay value di�erence during the calculation of σ̂2

r(k, l) is 30%, if we choose T60 = 0.3
s while the true reverberation time is T60 = 0.7 s or vice versa.
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Figure 3.8 � Exponential decay functions with di�erent T60 and corresponding
maximum error function

By choosing T60 = 0.5 s, the maximum of emax(Td) is just 18% at 29 ms. During the
parameter optimization it has been detected that this discrepancy is not perceivable
along our dereverberation procedure.
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Chapter 3. Spectral Subtraction

Because of this observation and the fact, that even the T60 estimation algorithms
exhibit an error about ±0.2 s, it is for our purpose suitable to suppose in general a
�xed reverberation time T60 in the range of 0.3 ≤ T60 ≤ 0.7 s s so that the maximum
discrepancy can be minimized.

3.3.3 Cepstro-Temporal Smoothing

In addition to the reverberation level estimation σ̂2
r(k, l), Equation (3.16) also re-

quires the estimation of the reverberated speech PSD σ̂2
z(k, l). In order to achieve

noise-robustness, the estimated noise PSD σ̂2
v(k, l) of Section 3.2 is used to calculate

a maximum-likelihood (ML) estimator ξmlz of the a priori signal to noise ratio (SNR)

ξmlz =
|X(k, l)|2

σ̂2
v(k, l)

− 1. (3.19)

The reverberated speech power Pz(k, l) suppressing segments dominated by noise
can be calculated as

Pz(k, l) = σ̂2
v(k, l) ·max(ξmlz , ξmlmin), (3.20)

where ξmlmin > 0 is used as a lower bound for ξmlz to prevent negative or zero values.
Based on the idea described in Section 2.1, cepstro-temporal smoothing is applied
to Pz(k, l) as introduced in [19]. The cepstrum of Pz(k, l) is used to design an appro-
priate, adoptively smoothed lifter suppressing parts of the signal that are dominated
by noise. Along Equation (2.3), the real cepstrum ĉP (q, l) of Pz(k, l) is

ĉP (q, l) = iDFT [ln[|Pz(k, l)|]] . (3.21)

Because of the symmetric real cepstrum, the following operations only need to be
applied to the �rst half q = 0, ..., K

2
, with K denoting the DFT-length assuming

K even. For the inverse transformation back into the power spectral domain, the
second half uses the mirrored �rst-half information to achieve a symmetric cepstrum.
While coe�cients representing the spectral envelope of the vocal tract are always at
around q = 0, the fundamental frequency f0 yields to a cepstral peak at q = fs

f0
that

is time-varying and constantly changing in quefrency. Therefore, liftering needs to
be adaptive in the cepstral domain. To suppress musical artifacts of rapidly changing
steep lifter slopes, an e�cient smoothing is applied to ĉP (q, l),

ĉP (q, l) = α(q, l)ĉP (q, l − 1) + (1− α(q, l))ĉP (q, l), (3.22)

with an adaptive smoothing factor α(q, l) that is quefrency- and frame-depended.
The smoothing factor represents an adaptive lifter in the cepstral domain in a similar
way as outlined in Chapter 2.
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3.3. Reverberation Power Estimation

It should be chosen so that little smoothing is applied to the low cepstral coe�cients
as well as the range around the quefrency q = fs

f0
. The smoothing value α(q, l) can

be adaptively updated by detecting f0:

α(q, l) =

{
αpitch if q ∈ Qpitch

α(q, l) if q /∈ Qpitch

, (3.23)

where Qpitch is a set of adjacent cepstral bins that represent
fs
f0
, while αpitch denotes

the smoothing constant for these bins. α(q, l) represents previous estimations of
f0 and the constant values αconst(q) for weighting the cepstral bins at the lower
quefrencies corresponding to the spectral characteristics of the vocal tract. The
cepstral peak of f0 may jump between two frames, and therefore an estimation error
of f0 would lead to a strong smoothing of the true f0 bin. To suppress the e�ect of
such an error, also α(q, l) is smoothed as

α(q, l) = βα(q, l − 1) + (1− β)αconst(q), (3.24)

where the smoothing constant β is a factor that determines the speed of adapting
αpitch to αconst(q), if it became lower in a previous frame. If f0 is detected in frame
l = l0, the smoothing factor α(q, l) at αpitch of the frame l = l0−1 is slowly decreasing
frame by frame and not getting zero immediately.

The fundamental frequency can be estimated by a simple maximum detection at the
typical quefrencies q = fs

f0
for 80 ≤ f0 ≤ 400 Hz. For improving the f0 estimation

algorithm, the log-spectrum is low-pass �ltered since f0 does not appear in higher
frequencies. Convolving the power cepstrum with a short Hamming window wH(q)
of length 8 converts into a multiplication in the log-spectrum domain and is therefore
low-pass �ltered

ĉlpP (q, l) = ĉP (q, l) ∗ wH(q). (3.25)

The quefrency bin qpitch(l) representing f0 is calculated as the maximum value within
the interval qlow ≤ q ≤ qhigh

qpitch(l) = arg max
q
{ĉlpP (q, l)|qlow ≤ q ≤ qhigh}, (3.26)

where qlow = fs
f0,high

and qhigh = fs
f0,low

are relevant bounds for searching q = fs
f0
. Since

voiced sounds are characterized by relatively high energy, the cepstral is typically
clearly dominant. On the other hand, unvoiced sounds often do not produce a dis-
tinct peak. It is reasonable to introduce a threshold Λthr as a minimum value that
has to be exceeded. Usually it is set to Λthr = 20% of the normalized cepstral am-
plitude. To further compensate errors during the fundamental frequency detection,
the set Q′pitch is introduced to search for peaks around the probable quefrency bin
in the cepstrum.
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Chapter 3. Spectral Subtraction

From this Qpitch is calculated as

Qpitch =

{
Q′pitch if ĉlpP (qpitch, l) ≥ Λthr

0 otherwise
. (3.27)

The set of bins around q = fs
f0

are de�ned by Q′pitch = {qpitch − ∆qpitch, ..., qpitch +

∆qpitch}, where ∆qpitch denotes the margin which produces the cepstral f0. After
calculating an appropriate smoothing value α(k, l), we are able to compute the
cepstral smoothing along Equation (3.22). Finally, an estimation of the reverberated
speech power σ̂2

z(k, l) can be done by a computation of an inverse complex cepstrum

σ̂2
z(k, l) = exp (κ+ DFT {ĉP (q, l)}) , (3.28)

where κ [22] is a constant coe�cient for bias compensation due to cepstral smooth-
ing. Figure 3.9 shows the low-pass �ltered real power cepstrum ĉlpP (q, l) of a single
reverberated speech frame.
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Figure 3.9 � Low-pass �ltered real power cepstrum ĉlpP (q, l) of a speech frame with
corresponding actual 1 − α(q, l) with a f0 peak at 7.5 ms without
in�uence of previous frame

The green line displays the actual smoothing factor 1 − α(q, l). At 7.5 ms, the
magenta colored peak represents an estimated f0 around which the interval contains
the value 1−αpitch due to Q′pitch. According to (3.23) only the values for Qpitch vary
over time, α(q, l) will be initialized as αconst to achieve constant smoothing to lower
cepstral values.
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3.3. Reverberation Power Estimation

Figure 3.10 shows the e�ect of smoothing α(q, l). In the displayed frame, f0 is
estimated at 6.3 ms. The interval of 1−α(q, l) around 6.3 ms is again set to 1−αpitch.
The range qlow ≤ q ≤ qhigh, where a f0 estimation occurs is illustrated with the
dotted red line. Further, the values of 1−α(q, l) around the previous interval where
f0 = 7.5 ms was detected, are attenuated but still present because of the smoothing
in Equation (3.24). In the quefrency range 0 ≤ q ≤ 1.5 ms, 1− α(q, l) contains the
constant values αconst(q) that are not a�ected by the smoothing of α(q, l). It consists
of three or more steps to weight quefrencies around q = 0 with decreasing values by
increasing quefrency q. Only the interval around the f0 estimate is smoothed over
time and set to 1− αpitch if a quefrency bin corresponding to f0 was found.
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Figure 3.10 � Low-pass �ltered real power cepstrum ĉlpP (q, l) of a speech frame with
corresponding actual 1 − α(q, l) with a f0 peak at 6.2 ms with the
in�uence of α(k, l − 1)

Figure 3.11 shows the di�erence between a cepstro-temporal smoothed and the un-
processed ML-estimated reverberant speech power spectrogram. The smoothing of
the real power cepstrum can be clearly seen by the smeared spectrogram over time.
Since only the noise estimate σ̂2

v(k, l) is taken into account, a discrepancy in the
frequency domain is not detectable yet. However, in Section 3.4.2, also the reverber-
ation estimate σ̂2

r(k, l) is applied to calculate the maximum-likelihood of the a priori
signal to interference ratio (SIR). Therefore, the cepstro-temporal smoothing can be
applied to calculate the dereverberated speech power estimate with σ̂2

r(k, l)+σ̂2
v(k, l)

as interference in the denominator of Equation 3.19.
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(a) ML-estimated speech power
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(b) Cepstro-temporal smoothed estimated speech power

Figure 3.11 � Spectrograms of a speech power estimation
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3.4. Spectral Gain Function

3.4 Spectral Gain Function

In the last block of the dereverberation system, a real-valued spectral gain function
G(k, l) is calculated to suppress reverberant parts of X(k, l) as given in Equation
(3.3). Assuming reverberation and noise to be additive interferences to the source
signal as described in Equation (3.1), the main goal is to �nd an appropriate G(k, l)
to minimize the error between the source signal s(n) and the dereverberated signal
ŝ(n). The derivation of the typical MMSE approach is explained in the next section.

3.4.1 MMSE Approach

If we assume a simple Wiener �lter as shown in Figure 3.12, the optimal �lter h(n)
can be found as soon as the error function e(n) becomes zero.

-
+ +

Figure 3.12 � Schematic overview of the Wiener �lter

Thus, by minimizing the expected mean squared error between the source signal
s(n) and the dereverberated speech ŝ(n) [23]

minE
{
e2(n)

}
= minE

{
(ŝ(n)− s(n))2} (3.29)

= minE
{

(h(n) ∗ x(n)− s(n))2} (3.30)

where Equation (3.29) is called the MMSE criterion, we can calculate an optimal
�lter by equating its derivate h(n) to zero [23]

h(n) ∗ ψxx(n) = ψxs(n). (3.31)

ψxx(n) denotes the autocorrelation of the noisy reverberated signal x(n) and ψxs(n)
the cross-correlation between the source signal s(n) and x(n). After transforming
Equation (3.31) into the STFT domain, we obtain

H(k, l) · σ2
xx(k, l) = σ2

xs(k, l), (3.32)
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where σ2
xx(k, l) represents the true PSD of the reverberated signal and σ2

xs(k, l)
the true cross-PSD between the noisy reverberated and the source signal. Assum-
ing orthogonality between x(n) and s(n), we may write σ2

xs(k, l) = σ2
ss(k, l) and

σ2
xx(k, l) = σ2

ss(k, l) + σ2
vv(k, l) + σ2

rr(k, l), where σ
2
vv(k, l) and σ

2
rr(k, l) are the true

PSDs of noise and reverberation. Thus we can write a solution for H(k, l) with the
true SIR ξ(k, l),

H(k, l) =
ξ(k, l)

1 + ξ(k, l)
, with ξ(k, l) =

σ2
ss(k, l)

σ2
vv(k, l) + σ2

rr(k, l)
, (3.33)

where H(k, l) is used as a spectral gain function H(k, l) = GWiener(k, l) to recon-
struct the dereverberated signal. Since we have no knowledge about any of the
true PSDs in Equation (3.33), we have to calculate an estimation of the noise PSD
σ̂2
v(k, l), the reverberation PSD σ̂2

r(k, l), and the source signal PSD σ̂2
s .

3.4.2 Dereverberated Speech Power Estimation

No matter if we use a Wiener �lter alone or another variation for solving the MMSE
criterion, we have to estimate at least an a priori SIR de�ned by

ξ̂(k, l) =
σ̂2
s(k, l)

σ̂2
r(k, l) + σ̂2

v(k, l)
. (3.34)

As described in Section 3.2 and 3.3, we are already able to calculate σ̂2
r(k, l) and

σ̂2
v(k, l). The source signal estimation σ̂2

s(k, l) is feasible by the afore-mentioned
cepstro-temporal smoothing. According to Equation (3.19), we can already specify
a ML-Estimation of the dereverberated speech power Ps(k, l) with

ξmls (k, l) =
|X(k, l)|2

σ̂2
v(k, l) + σ̂2

r(k, l)
− 1. (3.35)

Ps(k, l) =
[
σ̂2
v(k, l) + σ̂2

r(k, l)
]

max
(
ξmls (k, l), ξmlmin

)
(3.36)

Subsequently the cepstro-temporal smoothing is applied as described in Section
3.3.3. Using the a posteriori SIR

γ̂(k, l) =
|X(k, l)|2

σ̂2
v(k, l) + σ̂2

r(k, l)
, (3.37)

any spectral gain function can be developed for jointly suppressing both noise and
reverberation. The next sections introduce some approaches for calculating a suit-
able spectral gain function G(k, l) based on the a priori and a posteriori SIRs for
solving the MMSE criterion.
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3.4. Spectral Gain Function

3.4.3 Ephraim and Malah Spectral Subtraction Rule

Since the simple Wiener �lter for solving the MMSE criterion produces disturb-
ing artifacts known as musical noise, the so called Ephraim and Malah spectral
subtraction rule (EMSR) was developed. It employs real-valued, frequency- and
time-dependent gain function G(k, l) to reconstruct the spectral amplitude of the
source signal. The EMSR assumes that both the source signal and the interfer-
ence stem from a process with complex Gaussian distribution, and that adjacent
STFT-bands are orthogonal to each other

X(k, l) ⊥ X(k, l ± 1). (3.38)

Ephraim and Malah developed their minimum mean-square error short-time spectral
amplitude estimator (MMSE-STSA) based on the assumption that speech and noise
are random variables and statistically independent (for better readability we shortly
use the acronym SA for MMSE-STSA). Thus on the basis of the Gaussian statistical
model for spectral components, a gain function GSA(k, l) was derived in [24] which
is de�ned by the a priori and a posteriori SIR and can be calculated by minimizing
the MMSE of the spectra.

GSA(k, l) =

√
π

2

√
1

γ̂(k, l)

ξ̂(k, l)

1 + ξ̂(k, l)
M

[
γ̂(k, l)

ξ̂(k, l)

1 + ξ̂(k, l)

]
, (3.39)

where M(µ) = e−µ/2
[
(1 + µ)I0

(µ
2

)
+ µI1

(µ
2

)]
(3.40)

denotes the con�uent hypergeometric function of the �rst kind composed of the
Bessel functions of 0. and 1. order. An extended approach of Ephraim and Malah
was developed in [25]. Compared to the MMSE-STSA method the so called min-
imum mean-square error log-spectral amplitude estimator (MMSE LOG-STSA or
LSA) minimizes the error of the log-spectra instead of the unprocessed spectra. It
assumes that the mean-square error of the log-spectra is subjectively more con-
venient because of the logarithmic perception of sound volume of human hearing.
Therefore, the spectral gain function GLSA(k, l) can be calculated by [26]

GLSA(k, l) =
ξ̂(k, l)

1 + ξ̂(k, l)
exp

(
1

2

∫ ∞
ν(k,l)

e−t

t
dt

)
(3.41)

with ν(k, l) =
ξ̂(k, l)

1 + ξ̂(k, l)
· γ̂(k, l). (3.42)

As we can see from Equation (3.42), the value ν(k, l) can be expressed by the Wiener
gain function as ν(k, l) = GWiener(k, l) · γ(k, l).
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Furthermore, the exponential integral function can be written as an expansion in
series of Bronstein [27], as

E1(ν(k, l)) =

∫ ∞
ν(k,l)

e−t

t
dt = −C − ln(ν(k, l))−

∞∑
r=1

(−ν(k, l))r

r · r!
, (3.43)

with C = 0, 5772156649...(Euler Constant).

By limiting the sum of Equation 3.43, this expression can be used for a practical
implementation of the LSA algorithm given by

GLSA(k, l) = GWiener(k, l) · exp

(
1

2
· E1(ν(k, l))

)
. (3.44)

The range of ν(k, l) is limited to 0 < ν(k, l) < π for numerical stability, the ex-
ponential integral will converge towards zero as the denominator r · r! of the sum
increases rapidly with increasing r. Thus, it is suitable to stop the in�nite sum at
low values of r. For example for r = 10 the in�uence of the 10th element is at least
10 times smaller than the in�uence of r = 9 and even approximately 32 · 106 smaller
than the ratio at r = 1. Therefore, appropriate accuracy may be achieved already
with a maximum value of r = 6 as proposed in [26]. However, the computation
of such an exponential integral requires high computational complexity. Thus, it is
practical to search for simple alternatives such as the approximated LSA algorithm
which can lead to a similar gain function.

3.4.4 MMSE-LSA Approximation

A simple approximation of the exponential integral function E1(ν(k, l)) can be found
in [26]. If we look at Equation (3.43) and take Figure 3.13 into account, the log-
arithmic function − ln(ν(k, l)) increases for small arguments ν(k, l) � 1 while the
sum produces lower values for decreasing arguments ν(k, l). Therefore, it is suitable
to neglect the sum for ν(k, l)� 1 and the Equation simpli�es to

E1(ν(k, l)) = − ln(ν(k, l))− C = − ln(ν · eC). (3.45)

Hence, the range of values for this de�nition holds for ν(k, l) � eC . For values
ν(k, l)� eC , the exponential integral E1(ν(k, l)) converges towards zero. According
to [26], a rough approximation is given by

E1(ν(k, l)) = − ln

(
ν

e−C + ν

)
. (3.46)
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By means of Equation 3.46, the approximated LSA spectral gain function GApprox ≈
GLSA can be calculated as

GApprox(k, l) = GWiener(k, l) · exp

(
−1

2
ln

[
ν(k, l)

e−C + ν(k, l)

])
= GWiener(k, l) ·

√
e−C + ν(k, l)

ν(k, l)
(3.47)

=

√
GWiener(k, l) ·

(
GWiener(k, l) +

e−C

γ̂(k, l)

)
,

which shows a simple and computationally e�cient way for calculating the spec-
tral gain function. In Section 3.4.6, a short comparison between the introduced
approaches is discussed. A disadvantage of the gain functions discussed so far is
that all of them cannot be adjusted by compression factors or dumping constants.
The computation of the spectral amplitude estimators is bound to the estimation of
the a priori and a posteriori SIRs. Therefore, also the so called parameterized gain
function [28] is introduced in the next section.

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

6

8

e
−C

ν

f(
ν)

 

 
− ln(ν)

−

6∑

r=1

(−ν)r

r · r!

E1(ν)

Figure 3.13 � Exponential function E1(ν) and its components
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3.4.5 Parameterized Gain Function

While most of the algorithms for solving the MMSE criterion are using either com-
pressive weighting functions [25], [29] or statistical models of clean speech, the pa-
rameterized Gain function as proposed in [28] combines both of these approaches by
calculating a spectral gain in a highly parameterized version. Thus it is possible to
simulate many of the common spectral gain functions by choosing the corresponding
parameters. Searching a solution for the MMSE criterion under the assumption of a
chi-distribution of spectral speech magnitudes and a compression function c(x) = xβ

leads to the Equation given in [28]. With a compression factor β and a shaping factor
µ the gain function can then be calculated by

GPAR(k, l) =

√
ξ̂(k, l)

µ+ ξ̂(k, l)

Γ

(
µ+

β

2

)
Γ(µ)

Φ

(
1− µ− β

2
, 1;−ν(k, l)

)
Φ(1− µ, 1;−ν(k, l))

(√γ̂(k, l)
)−1

(3.48)

with ν(k, l) =
γ̂(k, l)ξ̂(k, l)

µ+ ξ̂(k, l)
,

where Γ(·) denotes the complete gamma function and Φ(α, γ; z) the con�uent hy-
pergeometric function which is de�ned by [30]

Φ(α, γ; z) = 1 +
α

γ

z

1!
+
α(α + 1)

γ(γ + 1)

z2

2!
+
α(α + 1)(α + 2)

γ(γ + 1)(γ + 2)

z3

3!
+ . . . (3.49)

The parameterized spectral gain has its advantage in the possibility to simulate many
di�erent versions of gain functions and to perform a �ne adjustment of the available
parameters. For example, by choosing β = 1 and µ = 1 the gain function simulates
the STSA-estimator, whereas β → 0 and µ = 1 simulate the LSA-estimator. How-
ever, as we can see from Equation (3.48) it requires high computational complexity
due to the computation of the con�uent hypergeometric function. It is hard to decide
at which instance the hypergeometric series of Equation 3.49 is stopped. It always
depends on the input parameters γ and α. Therefore, if a more simple approach
i.e. the approximation of Section 3.4.4 can lead to a similar dereverberation result
without parameterizing the calculation, it is disputable if the high parameterized
gain function is really necessary to compute.

44



3.4. Spectral Gain Function

3.4.6 Overview of Spectral Gain Functions

In the last few sections we have introduced a set of practical gain functions which
can be used for dereverberation. Table 3.1 shows a summary of the introduced gain
functions. All of these equations are based on solving the MMSE-criterion de�ned
in Section 3.4.1 but consist of di�erent probability models of speech and compress-
ing or shaping functions. In Chapter 4 we will try to �nd out the most suitable
gain function for the algorithm depending on computational complexity, possibility
of �ne-adjustment with compression or shaping factors and production of spectral
artifacts or musical noise as a minor product.

Approach Gain function equation

Wiener GWiener(k, l) = ξ̂(k,l)

1+ξ̂(k,l)

MMSE-SA GSA(k, l) =
√
π

2

√
1

γ̂(k,l)
GWiener(k, l) ·M [γ̂(k, l)GWiener(k, l)]

MMSE-LSA GLSA(k, l) = GWiener(k, l) · exp
(

1
2
· E1(ν(k, l))

)

Approximated GApprox(k, l) =

√
GWiener(k, l) ·

(
GWiener(k, l) + e−C

γ̂(k,l)

)

Parameterized GPAR(k, l) =

√
ξ̂(k,l)

µ+ξ̂(k,l)

[
Γ(µ+β

2 )
Γ(µ)

Φ(1−µ−β
2
,1;−ν(k,l))

Φ(1−µ,1;−ν(k,l))

]
1√
γ̂(k,l)

Table 3.1 � Overview of spectral gain functions
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Chapter 3. Spectral Subtraction

3.4.7 Frequency Smoothed Gain Function

No matter which gain function of Table 3.1 is used or which compression factors are
chosen, all of the gain functions produce strong spectral ripples (see Figure 3.14) at
any time instance because the estimation of noise, reverberation and dereverberated
speech occurs with a very high frequency resolution. These resonances and antires-
onances in the spectral domain can produce musical noise or annoying distortion in
speech reproduction. A sub-band based processing can �nd a remedy in suppressing
such e�ects and is computationally e�cient. However, an estimation of reverberated
and dereverberated speech power level by cepstro-temporal smoothing and the MS
noise estimation require a high frequency resolution for accurate results. Hence, a
sub-band processing is neglected and the smoothing is applied as the last step of
calculating the spectral gain function.
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Figure 3.14 � Gain functionG(k, l) at a single frame l = 9 producing strong ripples
in the spectral domain

According to the frequency selectivity of human hearing it is appropriate to perform
spectral smoothing in bands. The bark scale [31] divides the human range of audi-
bility into 24 sub-bands whose frequency width corresponds to a third-octave above
500 Hz. For the third-octave smoothing each magnitude value at frequency bin k is
replaced by a arithmetic mean of the magnitude values of a half third-octave (21/6)
underneath and a half third-octave above that frequency bin. For a higher resolu-
tion in the frequency domain, also the octave smoothing is a possible approach. the
arithmetic mean then follows a half octave (21/16) underneath and above. For our
purposes, the third-octave might overwhelm the frequency selectivity of the octave
smoothing.
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3.4. Spectral Gain Function

The third-octave smoothed spectral gain is given by

GThSM(k, l) =

k·2−1/6≤k<k·21/6∑
k

GOri(k, l)

k·2−1/6≤k<k·21/6∑
k

1

, (3.50)

where GOri(k, l) denotes the chosen original gain function from Table 3.1. Whereas
the computational complexity of such smoothing is high as we can see from Equation
(3.50), the already outlined approach of the exponential smoothing exhibits a more
e�cient way of gain function smoothing since it is a simple recursive averaging
method. Therefore, the exponentially smoothed gain function GExpSM(k, l) with a
constant smoothing parameter α is calculated by

GExpSM(k, l) = αGOri(k, l) + (1− α)GExpSM(k − 1, l). (3.51)

A low smoothing parameter i.e. α = 0.2 can lead to an approximately third-octave
smoothed spectral gain as we can see in Figure 3.15 for a single frame l = 9.
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GOri(k, l) l = 9
GThSM (k, l) l = 9
GExpSM(k, l) l = 9

Figure 3.15 � Original gain function GOri(k, l), third-octave smoothed gain
function GThSM(k, l) and exponentially smoothed gain function
GExpSM(k, l) with α = 0.1 at a single frame l = 9
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Chapter 3. Spectral Subtraction

Since GExpSM(k, l) applies a frequency-independent smoothing on the gain function,
GThSM(k, l) produces a frequency-dependent smoothing in which the strength of
the smoothing is constant in each octave band which better matches the human
hearing. However, the di�erence between the two smoothing variants appeared
negligible in the parameter adjustment by ear and thus the computational e�ciency
of exponential smoothing was preferred to the accuracy of octave band smoothing.

In Figure 3.16, an original approximated LSA gain function compared to the expo-
nentially smoothed gain function is shown. Due to the frequency smoothing and the
preceding cepstro-temporal smoothing done during the calculation of the gain func-
tion, there is no more hard decision suppression in GExpSM(k, l) that can produce
strong magnitude �uctuations. However, there are still parts in which GExpSM(k, l)
reaches −20 dB suppression and can therefore produce musical noise. In order to
reduce such artifacts, GExpSM(k, l) is �oored by G̃(k, l)

G̃(k, l) = max (GExpSM(k, l), Gmin) . (3.52)

Typically Gmin = −10 dB, but variations will also be evaluated in Chapter 4. Ad-
ditionally to prevent computational errors which can occur during the computation
of the a priori and a posteriori SIRs, also a ceiling of G̃(k, l) to Gmax = 0 dB as a
maximum value is introduced

Ĝ(k, l) = min
(
G̃(k, l), Gmax

)
. (3.53)

The �nal gain function Ĝ(k, l) is then used to obtain the dereverberated short-time
spectrum Ŝ(k, l) by multiplying Ĝ(k, l) with the reverberated short-time spectrum
X(k, l).
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Figure 3.16 � Comparison between original and exponentially smoothed gain func-
tion (approximated LSA)
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Chapter 3. Spectral Subtraction

3.5 Summary

In this Chapter, a system for spectral subtraction which jointly suppresses noise and
reverberation was introduced. Furthermore, it is robust to noise at reverberation
estimation and vice versa. As we have already announced in Section 3.2 the MS
approach o�ers good enough noise estimation results for our purposes. As shown in
Section 3.3.2, an estimation of the reverberation time is not crucial for an appropriate
dereverberation, whereas the reverberation estimation is based on Equation (3.16).
The cepstro-temporal smoothing was discussed as an estimation of the reverberated
as well as the dereverberated speech.

Additionally an exponential smoothing in the frequency domain on the calculated
gain function is applied. Since all gain functions are dependent on an estimation
of the a priori and a posteriori SIR we do not determine a speci�c gain function
yet. According to these de�nitions the complete spectral subtraction dereverberation
system is schematically described in Figure 3.17. The spectral subtraction procedure
in Figure 3.18 shows the clean speech signal spectrogram of a male speaker at 16
kHz as initial point. The kitchen RIR [14] was used for the reverberated speech
as we can see in the middle spectrogram. The last spectrogram corresponds to
the dereverberated speech signal. It can be noticed that a spectral suppression in
speci�c frequency regions takes place and that there is a reasonable improvement in
the dereverberated speech spectrogram.
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Figure 3.17 � Schematic overview of the �nal dereverberation system
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Figure 3.18 � Spectrograms of the dereverberation procedure of a male speaker
@16 kHz recorded in the kitchen RIR [14]
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Chapter 4

Algorithm Evaluation

This Chapter discusses the behavior of the algorithm using various parameter sets
and acoustic environments. Therefore, technical quality metrics are introduced that
provide a rough overview of how the algorithm performs. Furthermore, a multi-
stimulus test was undertaken with several persons to provide a rough perceptual
evaluation. For the evaluation, the source signal s(n) as well as the corresponding
interference r(n) + v(n) de�ned by the RIR and noise are known.

4.1 Evaluation by Technical Quality Metrics

4.1.1 Signal-to-Interference Ratio

To evaluate the e�ciency of the algorithm according to the relation between signal
and containing amount of reverberation and noise, the signal-to-interference ratio
(SIR) can be used. In general the SIR is de�ned as the ratio between the clean
speech signal power Ps and the reverberating power Pr plus noise power Pv . In the
logarithmic scale it is given by

SIR = 10 log10

(
Ps

Pr + Pv

)
dB. (4.1)

The ratio between the power values can therefore be calculated by the quadratic
Euclidean norm of the absolute signal values [32]. Under our assumptions of Chapter
3, reverberation is treated as a noisy part of the signal, where r(n) + v(n) = x(n)−
s(n) holds. The SIR is therefore given by

SIR = 10 log10

N−1∑
n=0

s2(n)

N−1∑
n=0

(x(n)− s(n))2

dB, (4.2)
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Chapter 4. Algorithm Evaluation

where N denotes the signal length. For a representative measurement, we �rst use
Equation (4.2) to obtain the SIR for the reverberant an noisy signal x(n) and then
replace x(n) with the dereverberated signal ŝ(n) to obtain a second SIR. Comparing
these two measures provides information about the quality of the joint dereverber-
ation algorithm. In most cases, there are parts of the signal that contain speech
pauses with low amplitude corresponding to noise. Therefore, the SIR tends to-
wards in�nite. It is suitable to use a so called segmental SIR which extracts de�ned
frames L of the speech sample. The average of the SIR values is given by

SIRseg =
1

|L|
·
∑
lεL

SIR(l), (4.3)

where L is a set of appropriately chosen frames containing enough signal energy for
an SIR computation. A proper choice considers frames in which the SIR is above
a lower threshold (i.e. −10dB) and saturated at an upper threshold (i.e. +30dB).
Averaging the SIR over frequency bands smoothes out the SIR to what might be
relevant for human hearing. The frequency-weighted segmental SIR (FWSegSIR)
[33] is calculated by

SIRFWSeg =
1

|L|
∑
lεL

1

Wl

K∗∑
k=1

10 log10

[
wk,l ·

∑
s2(n)∑

(x(n)− s(n))2

]
, (4.4)

where Wl =
∑K∗

k=1(wk,l) is the sum of the interference-dependent weights wk,l over
all frequency bands K∗. The FWSegSIR will be used as a suitable quality metric in
Chapter 4 by taking into account that a higher FWSegSIR indicates a better quality
of speech.

4.1.2 Speech-to-Reverberation Modulation Engery Ratio

This section presents an technical metric called speech-to-reverberation modulation
energy ratio (SRMR). The SRMR is a so called non-intrusive measure which means
that the quality rating does not depend on a distance measure between the clean
source signal and the reverberant or dereverberated counterpart. Therefore, it is of-
ten used as a measurement utility for speech dereverberation methods. As suggested
in [34], this metric includes standardized quality measurements such as estimated
coloration, reverberation fail e�ects, and overall quality. Furthermore it is also used
as a quality metric in the REVERB-Challenge [35], hence it is suitable to allow
comparative evaluation.

The SRMR is based on the gammatone modulation spectral energy, which can be
calculated by a discrete Fourier transform of the gammatone �ltered temporal en-
velope. A gammatone �lter bank with J = 23 channels is used to represent the
frequency-space transformation in the cochlea [36]. The modulation frequencies are
grouped to K∗ = 8 bands to emulate an auditory modulation �lter bank [37].
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4.1. Evaluation by Technical Quality Metrics

The gammatone �ltered, band-limited modulation spectral energy εj,k(l) is averaged
over all frames to get the so called modulation spectrogram εj,k. The SRMR is
de�ned by [34]

SRMR =

4∑
k=1

J∑
j=1

εj,k

K∗∑
k=5

J∑
j=1

εj,k

, (4.5)

where K∗ depends on the signal and denotes the number of gammatone �lters that
contain approximately 90% of the total signal energy. For example, if the �rst 8
gammatone �lters contain 90% of the total modulation energy, K∗ = 8. This allows
a signal-dependent calculation of the SRMR. The higher a SRMR value of a signal,
the better the performance of the dereverberation algorithm.

4.1.3 Cepstral Distance

Since speech segments are mainly characterized by the cepstral coe�cients at lower
quefrencies [38], it is reasonable to measure the Euclidean distance dc(l) between
the �rst cepstral coe�cients of the clean speech real cepstrum cs(q, l) and the dere-
verberated real cepstrum cŝ(q, l). The calculation of the cepstral distance (CD) for
a single frame l is given by

dc(l) =

√√√√Qmax∑
q=1

(cs(q, l)− cŝ(q, l))2, (4.6)

where Qmax is the maximum number of cepstral coe�cients i.e. Qmax = Q
4
used for

the distance measure. For the evaluation it is necessary to compute a mean over all
frames to obtain an overall evaluation result. The mean cepstral distance dmeanc is
calculated as

dmeanc =
1

Q
·

L∑
l=1

dc(l). (4.7)

The lower the distance, the more similar are the clean and the dereverberated cep-
stral coe�cients and thus the signals themselves. This distance measure is therefore
a powerful indicator for the performance of the algorithm.
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4.2 Evaluation by Perceptual Multi Stimulus Test

The multi-stimulus test is based on the approach of the MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) test which is an subjective evaluation
method for audio signals. It was primarily developed to evaluate the perceived
quality of audio compression algorithms in telephone systems. In comparison to the
older Mean Opinion Source (MOS) test, the MUSHRA requires fewer participants
because all experiments are made out of just one sample in di�erent situations which
allows us to get statistically signi�cant results [39].

4.2.1 Experimental Setup

The anchor of MUSHRA is generally de�ned as a low-passed version of the original
signal, which is not suitable for our evaluation study, in which the perceived amount
of reverberation and sound quality as the main attributes. Therefore, the anchor
can be neglected in this test. The main goal of the multiple stimuli test is to
identify how good the dereverberation algorithm works compared to the reverberated
speech. Thus, in addition to the dereverberated signal, the reverberated speech is
also evaluated by each listener.

Condition Td and T60 Smoothing Gain Function

Condition 1 Td = 32 ms , T60 = 0.3 s Yes MMSE-LSA

Condition 2 Td = 32 ms , T60 = 0.3 s Yes Approximated

Condition 3 Td = 32 ms , T60 = 0.3 s No MMSE-LSA

Condition 4 Td = 32 ms , T60 = 0.3 s No Approximated

Condition 5 Td = 64 ms , T60 = 0.5 s Yes MMSE-LSA

Condition 6 Td = 64 ms , T60 = 0.5 s Yes Approximated

Condition 7 Td = 64 ms , T60 = 0.5 s No MMSE-LSA

Condition 8 Td = 64 ms , T60 = 0.5 s No Approximated

Table 4.1 � Overview of multi stimulus conditions

The main test evaluates three di�erent fundamental algorithm settings for which the
parameter sets were prede�ned as good as possible to focus on practically relevant
settings of the evaluation. The value of Td in Equation (3.15) is crucial for the
perceived amount of reverberation and depends on the size of the room in which the
RIR was recorded.
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4.2. Evaluation by Perceptual Multi Stimulus Test

This also involves the adaption of the parameter T60. While we have seen that for
dereverberation in small room acoustics, the estimation of the reverberation time
is not crucial, the algorithm is also tested with larger rooms to test the robustness
under marginal conditions. Thus T60 is adopted to Td in those speci�c setups.
Further, the smoothing of the real-valued gain function as described in Section 3.4.7
is used as a test value to screen if the listeners prefer quality improvements by
suppressing musical noise rather than a lower reverberation, as it is an adjustable
trade-o� by using the smoothing function. As a last setting the di�erence between
the most suitable gain functions in Table 3.1 are tested.The MMSE-LSA and the
approximated MMSE-LSA were found to give the best dereverberation results in
terms of reverberation and suppression at a low amount of musical noise in the
parameter adjustment phase during the preparation of the experimental conditions.
The goal is to �nd out if it is necessary to calculate the exponential integral of the
LSA algorithm or if the simple calculation of the approximated LSA is su�cient for
the dereverberation. These three testing parameters (Td and T60, Smoothing, Gain
Function) led to the eight experimental conditions listed in Table 4.1.

These conditions are tested in three di�erent rooms extracted from the RWTH
Aachen RIR database [14]. The room size increases from small to large.

� Meeting Room de�nes a small room with short reverberation and repro-
duces the acoustic behavior of di�erent speakers during a meeting.
The average reverberation time is T 60 = 0.23s

� O�ce de�nes a medium large room with medium reverberation and is a
typical o�ce room with standard o�ce furniture.
The average reverberation time is T 60 = 0.43s

� Lecture Room de�nes the largest room with long reverberation and typical
auditorium furniture such as desks and chairs.
The average reverberation time is T 60 = 0.78s

Basically the evaluation is based on comparisons of a clean reference sound and a
number of dereverberated test sounds under the usage of the conditions described in
Table 4.1 plus the reverberated sound. Two attributes are used for the evaluation:

� Reverberation Level: This attribute is related to the perceived amount
of reverberation caused by a high ratio of re�ected to direct sound energy
depending on the room size which leads to the impression of a high di�usivity.
Example: The perceived level of reverberation di�ers signi�cantly between
rather small and very large spaces, such as living rooms and churches.

� Overall quality: This attribute is used to judge any and all detected dif-
ferences (in terms of characteristics of reverberation, additive noise, and pro-
cessing distortion, timbrel characteristics, naturalness, and so on) between
the reference and test sound excerpts. Typical of low overall quality: train
station announcements. Impression of how well the words of a speaker can
be understood. Typical for high overall quality: Newscaster.

In the next sections we will discuss the proposed multi stimulus test procedure on
the basis of the MUSHRA approach which contains a training and evaluation phase.
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4.2.2 Training Phase

The training phase is intended to allow the listener to obtain an idea of the whole
range of the possible qualities, reverberation and noise that can be experienced
in the grading phase. The listener is asked to listen to all sound excerpts that
have been selected. The training phase requests the listener to adjust the volume
of headphones, which should not be change during the grading phase to ensure
consistency. As soon as the listener is aware of all test sounds in a certain experiment,
the listening test continues with the grading phase.

4.2.3 Grading Phase

In the grading phase the listener is invited to evaluate all the sound �les from
the training phase divided into di�erent experiments depending on the di�erent
reference signals. The rating should re�ect the subjective judgment of the quality
and reverberation level for each of the sound excerpts presented. As shown in
Figure 4.1 the grading phase consists of two sliders for each sound item. One for
the perceived amount of reverberation and one for overall quality. The listener is
able to evaluate each sound �le compared to the reference on top from 0 (=Bad) to
100 (=Excellent) for the overall quality and from 0 (=High) to 100 (=low) for the
perceived reverberation level. The listener is able to listen to all sound �les as often
and long as required to provide a thorough response.

Figure 4.1 � Screenshot of the multi stimulus dereverberation test
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4.2.4 Analysis of Results

A meaningful evaluation of the results is subject to a careful inspection of the data,
�rst. Therefore, the procedure of correctly analyzing the scores given by the listeners
is presented in this section. To verify if the listeners scores are reliable, the o�ce
room is tested twice during the multi-stimulus test without knowledge of the listener.
If the discrepancy between the �rst and the second test score during the o�ce room
tests is higher than 20% at any instance, all of the listeners scores are excluded from
the analysis.

The remaining results are analyzed using the method proposed in [40]. First, the
mean score as an average of the scores of I listeners is calculated by

ujk =
1

I

I∑
i=1

uijk (4.8)

for a test condition j and audio sequence k. To present the overall results of the
test, an associated, 95% con�dence interval which is given by

[ujk − δjk, ujk + δjk] (4.9)

is calculated. The value δjk is given by

δjk = t0.05
Sjk√
I
, (4.10)

where Sjk denotes the standard deviation for each condition and audio sequence. It
is usually calculated by

Sjk =

√√√√ I∑
i=1

(ujk − uijk)2

I − 1
. (4.11)

The value t0.05 = 0.05 is used to obtain the usual signi�cance level of 95% as proposed
in [40]. The con�dence interval of Equation 4.9 is then illustrated with box plots to
show the upper and lower bounds ±δjk of the con�dence interval.
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4.3 Evaluation Results

This section discusses the evaluation results obtained from di�erent quality measures
and the above mentioned multi stimulus test. These results help us to adjust the
algorithm as its best and to �nd out if the dereverberation system is suitable for
practical applications.

4.3.1 Algorithm Settings

First, an overview of the parameter settings used for the evaluation of the technical
measures is given and the listening test in general. The STFT is based on a 32 ms
root-Hann window with 50% overlap, wherefore the block length is also 32 ms long.
The noise estimation is made by the MS algorithm from Section 3.2.1. The used
sliding window length to TSL = 3s and the maximum allowable smoothing constant
is set to αmax = 0.95.

The reverberation power estimation is based on the extended reverberation model
of Equation (3.16), where T60 = 0.4 s is assumed in general. The set of prediction
delays is chosen as Td = {32 ms, 64 ms, 128 ms}. For the a priori speech power
and dereverberated speech power estimation, the cepstro-temporal smoothing from
Section 3.3.3 is employed. The parameter settings are shown in Table 4.2

f0,low = 70 Hz αpitch = 0.2
f0,high = 300 Hz β = 0.95
Λthr = 0.4 κ = 0.2886
∆qpitch = 2 ξmlmin = 0.0022

αconst(q) =


0.3 if q ε {0, ..., q̂low}
0.65 if q ε {q̂low + 1, ..., q̂mid}
0.97 if q ε {q̂mid + 1, ..., N}

,

Table 4.2 � Parameter settings for the cepstro-temporal smoothing

where q̂low = 95 ms·fs
N

is the lower and q̂mid = 650 ms·fs
N

the middle bound for αconst(q).
The gain function employed is varied in the conditions of the evaluation itself. As
a reference, the approximated MMSE-LSA is used to evaluate optimal parameters.
The minimum Gain Gmin is usually −10 dB but is also varied. The maximum gain
Gmax is 0 dB. The additional exponential smoothing in the frequency domain is
also applied as a standard with a smoothing factor α = 0.2. With these settings,
�rst a technical quality evaluation is done for the algorithm with di�erent RIRs and
parameter sets. An overview can be seen in Table 4.3, where the cepstro-temporal
smoothing is denoted as "Ceps Smooth" and the smoothing of the gain function as
"Gain Smoothing". Third-octave and octave denote the band dependent �lter while
exponential corresponds to the smoothing from Equation (3.51).
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4.3. Evaluation Results

Furthermore, the speech �les are English and German men and women at a sample
rate of 48kHz or 16kHz. The rooms are extracted from the RIR database [14] and
the REVERB-Challenge [35].

Parameter Test Value

Gmin −15 dB −12 dB −9 dB −6 dB −3 dB

Gain Function GApprox GSA GLSA GWiener GPAR

Gain Smoothing None
Third-
Octave

Octave Exponen. -

Td 32 ms 64 ms 128 ms - -

@T60 =
0.3 s

@T60 =
0.5 s

@T60 =
0.7 s

- -

File Room Impulse Response

M. Eng. @16kHz Kitchen [14] SimRoom 1 Far [35]

W. Eng. @16kHz O�ce [14] SimRoom 1 Near [35]

M. Ger. @48kHz Meeting Room [14] SimRoom 2 Far [35]

W. Ger. @48kHz Lecture Room [14] SimRoom 2 Near [35]

Various @48kHz Bathroom [14] -

Table 4.3 � Overview of the possible test setups for the technical quality metrics
evaluation
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Chapter 4. Algorithm Evaluation

4.3.2 Results Technical Quality Metrics

This section discusses the results of the quality measures according to the settings
of Section 4.3.1. First, the most important parameter Gmin which is able to set
the strength of the dereverberation algorithm. For example if Gmin = 0 dB, the
algorithm will do nothing for Gmax = 0 dB. If Gmin is set gradually lower, the
algorithm will suppress noise and reverberation more and more until the lowest gain
function level is reached. Figure 4.2 shows the quality measure values for the male
English speaker with kitchen as RIR as a function of the minimum gain.
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Figure 4.2 � Quality measure of Gmin with M. Eng. @16kHz as sound �le and
di�erent RIRs

As illustrated in Figure 4.2, an increase of Gmin does not show any appreciable
changes on the quality measures until −10 dB. After that, the SRMR as well as the
FWSegSIR decrease with an increasing CD with lecture and o�ce as RIR which is
comprehensible because of the above explanation. In the �rst approach this could
mean that a lower Gmin is always better for dereverberation. However, by looking at
the meeting RIR evaluation, the quality values do not always exhibit this behavior
so that the best value for the meeting room is Gmin = −6 dB because i.e. the
higher musical noise at lower Gmin can also cause worse quality values. However, it
could be found from other measures (see Appendix A) that an optimal Gmin can be
around −10 dB. This is where all quality measures have their best values averaged
over all RIRs and sound �les of Table 4.3. This might be a good compromise between
reverberation level and overall quality. Even if Gmin can be manually set by the user
in future, it is advantageous to set an initial value.
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4.3. Evaluation Results

Another interesting measurement depends on the gain function employed. Since
some of them are of high computational complexity while others do not o�er a good
dereverberation or too highmusical noise artifacts, it is crucial to �nd an appropriate
gain function that balances the overall quality and the reverberation level. Figure
4.3 shows the quality measure as a function of the gain function employed.

     

4

4.5

5

5.5

6

6.5

7

GWiener GLSA GSA GApprox GPAR

Gain Function

V
al

ue

 

 

SRMR Office

SRMR Lecture

SRMR Meeting

CD Office

CD Lecture

CD Meeting

FWSegSIR Office

FWSegSIR Lecture

FWSegSIR Meeting

Figure 4.3 � Quality measure of gain functions with M. Eng. @16kHz as sound
�le and di�erent RIRs

By comparing the di�erent gain functions it can be seen that the Wiener gain func-
tion is not suitable for the displayed situations because of the high CD and the low
FWSegSIR values. The SRMR might be higher because of the higher reverberation
suppression but at cost of intense musical noise which is strongly perceivable. The
MMSE-SA algorithm is slightly worse than the MMSE-LSA or the approximated
MMSE-LSA, which is as expected if the descriptions in Section 3.4.3 are considered.
An interesting observation is that the approximated MMSE-LSA exhibits nearly
the same values as the MMSE-LSA but with much lower computational complexity.
Additionally these two approaches o�er the lowest values in general. The param-
eterized gain function is hard to evaluate because of the potentiality to simulate
all other gain functions of Table 3.1. However, this evaluation used the parameter
values which were determined properly as proposed in [10] (β = 0.9 and µ = 0.1).
In general the choice of the gain function doesn't us a better dereverberation re-
sult in terms of the quality measures. The results of Figure 4.3 are representative
for most of the situations of Table 4.3 because the tendencies are approximately
the same. For the multi-stimulus test it may be interesting to evaluate both, the
MMSE-LSA and the approximated MMSE-LSA gain function to �nd out which is
the most suitable one for the dereverberation algorithm.
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Chapter 4. Algorithm Evaluation

For investigating the in�uence of the choice which part of the reverberation is sup-
pressed, Td is also evaluated. Since Td is directly bounded to the frame length, it
only makes sense to test Td values as multiples of the frame length. Thus, if a frame
length of 32 ms is de�ned, a set of Td = {32 ms, 64 ms, 128 ms} is investigated.
While 32 ms and 64 ms correspond to early re�ections, 128 ms merges into the late
reverberation. However, if the extended reverberation model from Equation (3.16)
is used, the set Td may be included into the reverberation estimation anyway. It
is meaningful to set only the initial value Td1 to one of Td. The arrival of early
re�ections also depends on the room size. By assuming Td1 = 32 ms, the assumed
room is smaller than with Td1 = 64 ms. It is suitable to assume a higher T60 for
higher Td1 values as in the multi stimulus test. With the settings from Table 4.3,
the evaluation of Td and T60 can be seen in Figure 4.4.
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Figure 4.4 � Quality measure of Td and T60 with M. Eng. @16kHz as sound �le
and di�erent RIRs

Whereas the cepstral distance always rises room-independently with Td and T60,
clear di�erences in the SRMRs can be seen. This behavior is also detectable in
Appendix A. The best SRMR value for the small meeting room is considerably at
T60 = 0.3 s and Td = 32 ms while the best SRMR value for the large lecture room is at
T60 = 0.7 s and Td = 128 ms as expected. The middle value T60 = 0.5 s and Td = 64
�ts directly in between and completes the linearity. Since the dimensions of the
room where the recording takes place are typically unknown, the reverberation time
is set to T60 = 0.4 s as an average value as de�ned in Section 3.3.2. For the extended
reverberation model, using Td = 32 ms achieves dereverberation concentrated on
early re�ections.
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4.3. Evaluation Results

The last technical quality evaluation demonstrates the e�ect of spectral gain function
smoothing as described in Section 3.4.7. The setup consists of four di�erent versions
of gain functions. The unsmoothed gain function, the third-octave and octave band
smoothed, and the exponential smoothed gain function. While the third-octave and
octave processing is band dependent and requires high computational resources, the
exponential smoothing is simple to apply and can approximate the e�ectiveness of
the band dependent smoothing methods in a certain way. To evaluate the quality
of the di�erent approaches, they are considered in the quality evaluation as well as
in the multi-stimulus listening test. Figure 4.4 shows the technical metrics for four
di�erent smoothing versions.
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Figure 4.5 � Quality measure of gain function smoothing with M. Eng. @16kHz
as sound �le and di�erent RIRs

While the FWSegSIR is approximately constant for every smoothing approach, a
discrepancy in the SRMR and the CD can be detected. The cepstral distance
decreases by using any of the smoothing methods, although they can better suppress
musical noise. In fact also the higher SRMR without smoothing denotes a better
dereverberation, but it can produce spectral artifacts which decrease the overall
quality. By comparing the SRMR and the FWSegSIR of the di�erent smoothing
approaches, the octave smoothing seems to work best, but also the quality scores for
the exponential smoothing with a smoothing constant α = 0.2 are acceptable. The
results of the multi-stimulus test are meant to reveal if the exponential smoothing
is an appropriate and practical alternative to the more complex band-dependent
approaches.
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Chapter 4. Algorithm Evaluation

4.3.3 Results Multi Stimulus Test

The results of the multi stimulus test according to Section 4.2 are analyzed subse-
quently. For the test 23 listeners were asked for several sound �les and experiments
along Table 4.1. The di�erential scores for submitted results which exhibit statistical
representativeness are shown in Figure 4.6.
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Figure 4.6 � Mean scores of the multi-stimulus speech dereverberation test and
the evaluation of a con�dence interval of 95% for di�erent rooms and
conditions as described in Table 4.1
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4.3. Evaluation Results

The main awareness from the results is, that the reverberation level for all setups
decreases strongly compared to the reverberated signal. This is a good veri�cation
of our goal outlined in Chapter 1.3. Further,an uncertainty relation between overall
quality and the reverberation level can be seen. For each setup and room, the overall
quality decreases by an excessive decrease of the reverberation level.

If the di�erent parameter settings are compared, it can be seen that for example
the lecture room, higher Td values outperform in terms of reverberation level while
the overall quality is not a�ected by changing Td. Further, for the meeting room
and the o�ce, the higher Td = 64 ms seems to work at least as good as Td = 32
ms if the reverberation level and the overall quality is considered. By comparing
the conditions with active or inactive smoothing, is can be seen that the smoothed
gain functions provide a better overall quality but lower reverberation suppression
as expected from the technical quality measures. By taking the gain functions
into account, the approximated MMSE-LSA seems to yield to a lower reverberation
suppression and higher overall quality when compared to the MMSE-LSA.

The experiment may not provide a general answer, because of its limited number
of participants, rooms, and sound samples. Moreover, the vast number of thinkable
parametric and algorithmic variations make it di�cult to �nd de�nite answers indi-
cating the perfectly compiled and adjusted algorithm. Still, the experiment managed
to highlight some relevant tendencies among the di�erent conditions and suitable
default settings that were desired.

It always depends on the recording and especially on the room where the recording
took place. Some parameters can potentially be optimized by blindly calculating i.e.
the room dimensions or reverberation level. On the other hand, parameters like the
minimum Gain Gmin should be controlled by the user itself because of the ability
to control the relation between overall quality and the strength of reverberation
suppression.

Although the multi-stimulus test had fewer participating listeners and di�erent
rooms compared to the MUSHRA test in the REVERB-Challenge [35], it is interest-
ing to o�er a compromise between the test results. In Appendix B, Figure B.1 shows
the results of the MUSHRA tests of the REVERB-Challenge. Especially the scores
of the reverberation level di�er as the proposed algorithm exhibits a lower reverber-
ation level for all conditions and rooms except the large lecture room. The overall
quality is similar for most of the conditions compared to the REVERB-Challenge
results. However, for the conditions 1 and 7, the overall quality exhibits better
results which could be induced due to the exponentially smoothed gain functions.
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Chapter 5

Conclusion

Reverberation and noise degrade the speech intelligibility under particular circum-
stances and a�ect the naturalness of recorded sounds. The main goal of this work
was to develop an approach for suppressing such unwanted in�uences by means of
state-of-the-art dereverberation methods. Two di�erent methods based on spectral
subtraction and homomorphic deconvolution were investigated and extended. It
has been shown exemplary that the reverberation cancellation under the successful
use of the homomorphic deconvolution is still a big challenge and unlikely to yield
accurate results due to phase unwrapping errors and the problem of cross-talking
re�ections within a frame-based dereverberation.

On the other hand, the spectral subtraction o�ered a promising technique for rever-
beration suppression. Based on the usage of Polack's reverberation model, the MS
noise estimator, and the EMSR it was possible to exploit the perception of human
hearing for the bene�t of an appropriate dereverberation. Further, it can be seen
from the results of the REVERB-Challenge that this is one of the most powerful
techniques for single-channel dereverberation at the current state of research. Com-
pared to the method proposed in [10], this thesis extended the reverberation model
with a simple summation procedure and used a constant T60 assumption for the
reverberation time estimation to achieve dereverberation in small rooms. Further-
more, di�erent spectral gain functions were investigated and the parameter settings
optimized for small room acoustic purposes.

Still, it is an illusion to think that this powerful method would achieve a perfect
reconstruction of the clean signal with spectral subtraction because of the problem
of exact detection of interference and speech. Especially for re�ections, Polack's
reverberation model does not �t anymore for all sorts of recordings or rooms respec-
tively. Since the properties of an arbitrary room are unknown, it is impossible to
�nd generally optimal settings that also cover the estimation of the early re�ections.
To achieve a complete reverberation cancellation, the magnitude and phase of the
processed signal have to be considered at every time instance. In theory this is
only approximately achievable with a very high amount of data and computational
complexity. Thus, it is impracticable for current as well as for future applications.
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Appendix A. Results of the Technical Quality Metrics
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Figure A.1 � Quality Measure of Gmin with W. Eng. @16kHz
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Figure A.2 � Quality Measure of Gmin with W. Ger. @48kHz
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Figure A.3 � Quality Measure of Gmin with M. Ger. @48kHz
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Figure A.4 � Quality Measure of Gmin with Various @48kHz
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Figure A.5 � Quality Measure of gain functions with W. Eng. @16kHz
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Figure A.6 � Quality Measure of gain functions with W. Ger. @48kHz
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Figure A.7 � Quality Measure of gain functions with M. Ger. @48kHz
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Figure A.8 � Quality Measure of gain functions with Various @48kHz
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Figure A.9 � Quality Measure of Td and T60 with W. Eng. @16kHz
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Figure A.10 � Quality Measure of Td and T60 with W. Ger. @48kHz

78



32ms @0.3s 64ms @0.5s 128ms @0.7s
3

4

5

6

7

8

9

T
d
 and T

60

V
al

ue

 

 

SRMR Office

SRMR Lecture

SRMR Meeting

CD Office

CD Lecture

CD Meeting

FWSegSIR Office

FWSegSIR Lecture

FWSegSIR Meeting

Figure A.11 � Quality Measure of Td and T60 with M. Ger. @48kHz

32ms @0.3s 64ms @0.5s 128ms @0.7s

3

4

5

6

7

8

9

T
d
 and T

60

V
al

ue

 

 

SRMR Office

SRMR Lecture

SRMR Meeting

CD Office

CD Lecture

CD Meeting

FWSegSIR Office

FWSegSIR Lecture

FWSegSIR Meeting

Figure A.12 � Quality Measure of Td and T60 with Various @48kHz
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Appendix A. Results of the Technical Quality Metrics
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Figure A.13 � Quality Measure of gain function smoothing with W. Eng. @16kHz
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Figure A.14 � Quality Measure of gain function smoothing with W. Ger. @48kHz
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Figure A.15 � Quality Measure of gain function smoothing with M. Ger. @48kHz
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Figure A.16 � Quality Measure of gain function smoothing with Various @48kHz
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Appendix B

MUSHRA Results of the

REVERB-Challenge
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Figure B.1 � Mean scores for the REVERB-Challenge [35] MUSHRA test plotted
along with the associated 95% con�dence interval

83


	Introduction
	System Description
	Overview of Dereverberation Techniques
	Proposed Dereverberation Algorithm

	Homomorphic Deconvolution
	Real-Cepstrum Based Dereverberation
	Cepstral Liftering
	Signal Reconstruction

	Complex-Cepstrum Based Dereverberation
	RIR Representation in the Cepstral Domain
	Cepstral Mean Subtraction
	Phase Unwrapping
	Cross-Talking due to STFT Based Compuation
	Cepstral Mean by Speech Segmentation

	Discussion

	Spectral Subtraction
	System Overview
	Noise Power Estimation
	Minimum Statistics
	Optimal Smoothing

	Reverberation Power Estimation
	Polack's Reverberation Model
	Reverberation Time Estimation
	Cepstro-Temporal Smoothing

	Spectral Gain Function
	MMSE Approach
	Dereverberated Speech Power Estimation
	Ephraim and Malah Spectral Subtraction Rule
	MMSE-LSA Approximation
	Parameterized Gain Function
	Overview of Spectral Gain Functions
	Frequency Smoothed Gain Function

	Summary

	Algorithm Evaluation
	Evaluation by Technical Quality Metrics
	Signal-to-Interference Ratio
	Speech-to-Reverberation Modulation Engery Ratio
	Cepstral Distance

	Evaluation by Perceptual Multi Stimulus Test
	Experimental Setup
	Training Phase
	Grading Phase
	Analysis of Results

	Evaluation Results
	Algorithm Settings
	Results Technical Quality Metrics
	Results Multi Stimulus Test


	Conclusion
	Appendices
	Results of the Technical Quality Metrics
	MUSHRA Results of the REVERB-Challenge

