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Abstract

Annoying howling caused by acoustic feedback is an omnipresent problem in
amplified live-sound situations. There are some algorithms that detect feedback
howling frequencies automatically and try to eliminate these via notch filters. For
the detection of the feedback frequencies, several different approaches and criteria
are available, that can be used separately or in combination. The proposed algo-
rithms shall be implemented and evaluated in a suitable simulation environment.
In this work, a new evaluation method is designed, that is more objective than the
proposed evaluation in literature. Two evaluation methods are introduced, but the
final evaluation focuses on the new developed method.
Further, the improvement of the detection algorithms by using a Constant-Q-
Analysis, and the additional use of a second microphone are investigated. This
second microphone can gather additional information, such as the estimation of
maximum stable gain (MSG) of the amplification system and might improve the
performance.
The evaluation results of several detection criteria form a basis for an advanced
design of a feedback detector.
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1 Introduction

Almost everyone who visits pop/rock-concerts from time to time, has experienced a
situation where the public adress (PA) system started to howl due to acoustic feedback.
Whereas at live-music events a qualified sound engingeer is usually present at any time,
especially in speech reinforcement situations a technical supervisor is not present or
available. But even a properly equalized PA system does not guarantee a howling-free
system. If the microphone positions are not static, i.e. a microphone is moved over the
stage, the transfer functions change and new situations can occur, that weren’t taken
into account and cause unstable feedback. To handle this problem, an adaptive feedback
canceller is a good solution. The focus of this work lies on the detection of feedback
howling frequencies, not on cancelling or suppression methods.

1.1 How occurs feedback howling?

In every real sound reinforcement situation (except in a perfect free-field) a part of
the amplified signal is picked up by the microphone and amplified again. Assuming
simplified conditions with a dry source signal at the microphone and no additional noise,
we state the signal model in Fig. 1. Eq. (1) describes the microphone signal x(t),

s(t)
x(t)

F

G

u(t)

Figure 1: General signal model of feedback loop with source signal s(t), electroacoustical
forward path G and feedback path F

consisting of the source signal s(t) and the additional term caused by the feedback via
one or more loudspeakers. g(t) is the impulse response of the complete electroacoustical
path including microphone, preamp, signal processing (e.g. EQ), amplifier and speaker
characteristics. The room impulse response measured between the loudspeaker and
microphone positions is called f(t). G(ejω) and F (ejω) are the corresponding transfer
functions in the frequency domain.

x(t) = s(t) + u(t) = s(t) + f(t) ∗ g(t) ∗ x(t) (1)

The overall transfer function of the system in Fig. 1 can be calculated to

X(ejω)

S(ejω)
=

1

1−G(ejω)F (ejω)
(2)

A LTI system is BIBO stable, if its impulse response is absolutely summable [7]. In the
frequency domain all poles have to be inside the unit circle for BIBO stability. Therefore,
for our system follows:

If |G(ejω)F (ejω)| ≤ 1 ⇒ BIBO stable (3)
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This means that for certain poles in the transfer function Eq. (2), our system gets
unstable, even if a bounded (stable) input signal is given. Depending on the unstable
frequency pole, we perceive this unstability as howling, since it occurs most frequent at
frequencies between about 200 and 5000 Hz . The howling has a very narrow-band like
character similar to a single sine component, because usually only one single frequency
is unstable.

1.2 Notch filter based howling suppression

There are several techniques for howling cancellation or suppression available, such as
phase modulation, gain reduction, spatial filtering and room modeling methods [1]. Gain
reduction methods can be discriminated between automatic gain control (AGC), that
reduces the entire frequency range, automatic equalization (AEQ), that reduces critical
subbands and notch-filter-based howling suppression (NHS). The latter reduces the gain
in narrow frequency bands around critical frequencies and this is the choice for this work.

s(t)H

howling
detection

x(t)

F

G

d(t)

u(t)

Figure 2: Feedback loop with source signal s(t), Bank of adjustable notchfilters H(ejω)
controlled by the parameter set Dh, electroacoustical forward path G(ejω) and feedback
path F (ejω)

Figure 2 shows again the LTI system from Fig. 1 with an inserted notch filter, controlled
by a howling detection algorithm.

x(t) = s(t) + f(t) ∗ g(t) ∗ h(t) ∗ x(t) (4)

The transfer function is in analogy to Eq. (2)

X(ejω)

S(ejω)
=

1

1−H(ejω)G(ejω)F (ejω)
(5)

Now the filter H(ejω) has to be designed, that the condition for BIBO stability (3) is
fulfilled.

|H(ejω)G(ejω)F (ejω)| ≤ 1 (6)

The output after the cancelling filter H(ejω) is the desired signal d(t), which should be
howling free. The howling detection algorithm operates on the microphone signal x(t)
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and outputs a set of howling frequencies for each time frame. These detected frequencies
form together with other filter design parameters the parameter set Dh(t). A notch filter
design needs at least the center frequency, the gain reduction value and a bandwidth.
An advanced notch-filter design can include a time-variant design for all parameters, not
only the center frequency. In simpler implementations some of the parameters can kept
static, e.g. the notch-filter bandwidth.

2 Available Criteria

The paper of Toon van Waterschoot and Marc Moonen [2] is used as a starting point
for this work. It provides a collection of various criteria for feedback howling detection.
In this section, the criteria and the evaluation method proposed in [2] are explained.

The idea behind the criteria is the following: The microphone signal x(t) is buffered
and framed with a buffer size of N and hop-size R, windowed and transformed into the
frequency domain via FFT.

x(t) = [x(t+R−N) ... x(t+R− 1)]T (7)

X(ωk, t) =
N−1∑
n=0

w(tn)x(tn)e
−jωktn (8)

As not stated different, the values N = 4096, R = 1
2
N and a Blackman window for w(t)

are used at a sampling frequency fs = 44100 Hz. The spectra X(ωk, t) are processed by
a peak picking algorithm, that delivers the angular frequencies ωi of the detected peaks
as a set of “howling candidates” Dω(t). The feedback detection algorithms operate
on this set of M howling candidates and calculate a certain criterion value for every
howling candidate ωi ∈ Dω(t). If this value exceeds a threshold, the null hypothesis -
H0: howling does not occur - is rejected, otherwise no howling is detected.

The simplest criterion is to take a fixed power threshold value, e.g. P0 = 85 dB SPL to
decide whether a frequency bin contains feedback or not. Waterschoot collected 6 such
criteria and one, that merges two of these into a new criterion.

2.1 Single-feature criteria

Spectral criteria:
1. Peak-to-Threshold Power Ratio (PTPR): Determines the ratio of the spectral

power of the howling candidate ωi and a fixed absolute power threshold P0:

PTPR(ωi, t) [dB] = 10 log10
|X(ωi, t)|2

P0

(9)

If the PTPR(ωi, t) value exceeds the threshold TPTPR, howling is detected.

PTPR(ωi, t) ≥ TPTPR [dB] ⇒ ωi ∈ Dh(t) (10)
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2. Peak-to-Average Power Ratio (PAPR): Ratio between the average microphone
signal power P x(t) and the howling component power.

PAPR(ωi, t) [dB] = 10 log10
|X(ωi, t)|2

P x(t)
(11)

P x(t) =
1

N

N−1∑
k=0

|X(ωi, t)|2 (12)

PAPR(ωi, t) ≥ TPAPR [dB] ⇒ ωi ∈ Dh(t) (13)

3. Peak-to-Harmonic Power Ratio (PHPR): A spectral feature that determines the ra-
tio of the candidate howling component power |Y (ωi, t)|2 and its mth (sub)harmonic
component power. Howling has not the same spectral structure as speech or mu-
sic with its harmonic components. The feature uses this property to discriminate
between howling and signal components.

PHPR(ωi, t) [dB] = 10 log10
|X(ωi, t)|2

|X(mωi, t)|2
(14)

∧
m∈MPHPR

[
PHPR(ωi, t) ≥ TPHPR [dB]

]
⇒ ωi ∈ Dh(t) (15)

4. Peak-to-Neighboring Power Ratio (PNPR): A spectral feature that uses the fact,
that howling is very narrow-band. It determines the ratio between the howling
candidate component power and the power of its mth neighboring frequency com-
ponent.

PNPR(ωi, t) [dB] = 10 log10
|X(ωi, t)|2

|X(ωi + 2πm/N, t)|2
(16)

∧
m∈MPNPR

[
PNPR(ωi, t) ≥ TPNPR [dB]

]
⇒ ωi ∈ Dh(t) (17)

Temporal criteria:

5. Interframe Peak Magnitude Persistence (IPMP): A temporal feature that counts
the occurrence of the howling candidate frequencies ωi in the past QM frames. It
is based on the idea, that howling typically persists for a longer time than speech
or tonal components.

IPMP (ωi, t) =

QM−1∑
j=0

[ωi ∈ Dω(t− jP )]

QM

(18)

IPMP (ωi, t) ≥ TIPMP ⇒ ωi ∈ Dh(t) (19)
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6. Interframe Magnitude Slope Deviation (IMSD): A temporal criterion that deter-
mines the deviation over QM successive signal frames of the slope. The differeti-
ation is carried out between an old signal frame and more recent signal frames.

IMSD(ωi, t) =
1

QM − 1

QM−1∑
m=1

[
1

QM

QM−1∑
j=1

1

QM − j

·
(
20 log10 |X(ωi, t− jP )| − 20 log10 |X(ωi, t−QMP )|

)
− 1

m

m−1∑
j=0

1

m− j
·
(
20 log10 |X(ωi, t− jP )| − 20 log10 |X(ωi, t−mP )|

)]
(20)

IMSD(ωi, t) ≤ TIMSD ⇒ ωi ∈ Dh(t) (21)

2.2 Multi-feature criteria

To gain better performance, multiple criteria can be combined with an logical AND
operator. This improves the performance drastically as later can be seen. The AND-
combination is demonstrated as an example with the PHPR & IMSD criteria. It can be
also used for any other combination.(

∧
m∈MPHPR

[
PHPR(ωi, t) ≥ TPHPR [dB]

])
∧ IPMP (ωi, t) ≥ TIPMP ⇒ ωi ∈ Dh(t)

(22)

Another feature, that combines basically the PNPR and IMSD criteria, is proposed in [6].
The Feedback Existence Probability (FEP) criterion combines peakness and slopeness
features.

FEP (ωi, t) = 0.7 · slopeness(ωi, t) + 0.3 · peakness(ωi, t) (23)

FEP (ωi, t) ≥ TFEP ⇒ ωi ∈ Dh(t) (24)

with

peakness(ωi, t) =
1

16

7∑
j=0

{[
1

6

7∑
m=2

PNPR(ωi, t− jP,m) ≥ 15 dB
]

+

[
1

6

−2∑
m=−7

PNPR(ωi, t− jP,m) ≥ 15 dB
]}

(25)

slopeness(ωi, t) = e−|IMSD(ωi,t)| (26)

3 Implementation and optimization

This section explains some details about the implementation of the peak picking al-
gorithm and the PHPR criterion. In section 3.4 and 3.5, two approaches for further
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perfomance improvement are introduced. 3.5 is not included in the evaluation process,
because we could not find a way, that the approach contributes to a performance im-
provement. But it gives the possibility to estimate the maximum stable gain of a system.

3.1 Peak picking algorithm

The peak picking algorithm 1 - here shown for the spectral magnitude A(k) = |X(ωk)|
with k = 0...N

2
- searches for changes in the its deviation A′(k) from positive to negative

values. These are local maxima of A(k),

A′(k) = A(k)− A(k + 1); (27)
{A′(k) ≥ 0 ∧ A′(k + 1) ≤ 0} ⇒ ωk ∈ Dω

This algorithm delivers the set of peaks Dω(t). After that we drop peak values for k = 0,
since a DC peak is not useful and also k = N

2
− 7 ... N

2
, because it is easier for the

implementation of some algorithms (PNPR, FEP), which operate on the picked peaks.
At frequencies near 20 kHz the damping through loudspeakers and the air is usually that
high, that acoustic feedback won’t occur there in a practical scenario.

3.2 Improvement of the PHPR algorithm

As stated in Eq. (14), there could occur two problems:
– What if a peak with a continuous frequency |Y (ωi, t)| lies between two DFT bins
|Y (ωk, t)| and |Y (ωk+1, t)|?

– What if the multiplication by the factors m does not correspond exactly to the har-
monic component and misses it by some neighbor bins?

The solution to the first problem is to interpolate for every detected howling frequency.
For the second problem, we define a tolerance bandwidth for harmonics. If a peak
inside this tolerance bandwidth around a peak |Y (mωi, t)| is found, then this peak
replaces the calculated bin. A quadratic interpolation is used, which follows the equation
y(x) = a(x− p)2 + b, to calculate the peak location

p =
y−1 − y+1

2(y−1 − 2y0 + y+1)
(28)

and peak height
y = y0 − 0.25(y−1 − y+1)p (29)

for three adjacent samples [y−1 y0 y+1]. This is shown graphically in Fig. 3. If the
interpolated frequency m ·ωi,int lies inside the bandwidth B = 1

30
with another frequency

in the set Dω(t), the value from Dω(t) is taken instead of |Y (m · ωi,int, t)|. This is only
relavant at higher frequencies, where the DFT resolution has a finer grid than 1

30
octave.

1. copyright 1994, by C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
& H.W. Schussler. For use with the book “Computer-Based Exercises for Signal Processing Using
MATLAB” (Prentice-Hall, 1994).
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Figure 3: Peak picking and interpolation for PHPR

3.3 Cascade temporal criterion IPMP with other criteria as
post-processor

The combination of the temporal IPMP feature does not improve the performance, if
it is AND connected with other criteria as a multi-feature (see section 2.2). Toon van
Waterschoot’s and our simulations showed this result likewise, so we introduce a little
tweak: We don’t use a logical AND conjunction for IPMP, but we cascade the feature
after all the others. The IPMP feature operates now as a post-processor on the output
howling bins ωh ∈ Dh of one or more AND-joint features. So the input to the IPMP
processor is a selection, not the whole set of peaks Dω(t). Fig. 4 illustrates the signal
flow. This results in a kind of temporal smoothing, because the best working threshold
turned out to be TIPMP = QM − 1. If not stated otherwise, QM = 5 and TIPMP = 4
is used.

IPMP (ωh, t) =

QM−1∑
j=0

[ωh ∈ Dh(t− jP )]

QM

(30)

IPMP (ωh, t) ≥ TIPMP ⇒ ωi ∈ Dh′(t) (31)

framing

x(t) X(t)

single criterium 1

single criterium M

... & IPMPx(t)
window
+ FFT

peak
picker

optional

Figure 4: Calculation of the notch filter parameters Dh from microphone signal x(t)
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3.4 Constant-Q Analysis

The spectral criteria PHRP and PNPR show a strongly varying performance The given
linear frequency resolution of the DFT is quite low at lower octaves and high at the
upper octaves, A logarithmic frequency resolution would fit a perceptive grid for musical
content as howling components better. The Constant-Q-Transformation (CQT) [3] is
a suited time-to-frequency domain transformation for this problem. It allows a spectral
analysis holding logarithmic spaced spectral bins with equal bandwidth.
The CQT of a discrete-time signal x(n) is defined by

XCQ(k, n) =

n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k(j − n+Nk/2) (32)

where the basis functions ak(n), also called time-frequency atoms are

ak(n) =
1

Nk

w

(
n

Nk

)
exp

[
−i2πn

fk
fs

]
. (33)

w denotes a window function and the center frequencies obey

fk = f12
k−1
B . (34)

The frequency dependent window length Nk computes as follows, with 0 < q ≤ 1 being
a scaling factor and B the number of bins per octave.

Nk =
qfs

fk(2
1
B − 1)

(35)

For the implementation in Matlab, the CQT-Toolbox published in [5] was used, that
gives a quick usable and efficient implementation of a constant-Q transform.

3.5 Two Microphone Method

An additional idea to get better performance of howling detection algorithms is to use
a second microphone capsule, coincident or spatially separated, to get more information
and calculate the features from this second microphone signal. But since the information,
the second microphone picks up, is not really different to the first microphone, the feature
calculation cannot be improved further.
At least we can use the second capsule to calculate the actual gain factor a, that is placed
in the electroacoustical forward path G(ejω) = a ·Gn(e

jω) with max(Gn(e
jω)) = 1.

y1(t) = V1s(t) + aH1y1(t); ⇒ y1(t) =
V1x(t)

1− aH1

(36)

y2(t) = H2x(t) + y1(t) · aV2 = H2x(t) +
V1x(t)

1− aH1

· aV2 (37)
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Figure 5: Source leakage using two microphone capsules, the first pointing to the signal
s(t), the second aiming at the loudspeaker signal u(t)

y2(t)

y1(t)
=

H2(1− aH1)

V1

+ aV2 =
H2

V1

+ a ·

(
V2 −

H1H2

V1

)
(38)

Assuming that the front-transfer functions of the microphones are ideal, V1 = V2 = 1,
we can estimate the absolute value of the gain factor in Eq. (39) by squaring each side
of Eq. (38) for energy and resolving the equation to a.

|a| ≈ H1H2 − 1

2
(
H2 ± |y2(t)

y1(t)
|
) (39)
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Figure 6: Relationship between feedback loop gain factor a and the signal ratio of two
microphones for different backwards attentuations h2 of microphone 2

The relationship depicted in Fig. 6 becomes more linear with a decreasing backwards
damping factor |h2|. This lets assume that the optimal directivity pattern for the second
microphone would be a cardiod, pointing backwards to the speaker.
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4 Evaluation of the criteria

The evaluation as Toon van Waterschoot et al. did, seemed to have some weak points.
After discussing the realization according to his method, another new developed method
to evaluate the algorithms is presented.

4.1 First Environment

The method evaluates an audio file, that contains a signal and a building up howling
component. For this reason, a feedback loop was built up in Pure Data and several audio
files were generated with some combinations of signals and impulse responses. They are
listed in Table 1. A signal - impulse response pair is named after the signal label (Tab. 1
left column) and the impulse response identifier letter (Tab. 1 3rd column) as appendix
or as subscript. The audiofiles are truncated when they reach a certain absolute signal

signals impulse responses
label description label description

Mendel Classical Orchestra:
Mendelssohn wedding march

F livingroom, measured with
Fostex nearfield monitors

speech female speech K conference room
Tenor singing tenor
Violine Violine (original used by [2]) impulse response used by [2]

Table 1: Labeling and description of audiofiles and impulse responses

power threshold. This results in a varying length of about 30 seconds, depending on how
fast the howling builds up. The following analysis is implemented in Matlab. The whole
audiofile is analyzed and the detected howling bins of each criterium are recorded.

4.1.1 Evaluation method

To calclulate a probability of detection PD and a probability of false alarm PFA we
need to know the number of bins, that correspond to true howling, the number of true
positives NTP , and the bins that are delivered by the algorithm as howling bins, but
don’t correspond to howling: the false positives NFP . By dividing the true positives by
all true howling bins NP , we calculate the hitrate to

PD =
NTP

NP

(40)

The negative realizations of the data set NN allows us to calculate the false alarm rate.
The number of negative realizations is obtained from the number of the peak picker
outputs without the number of true positives.

PFA =
NFP

NN

with NN = NDω −NTP (41)
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Figure 7: ROC of PNPR algorithm for the violine signal

Plotting these two rates against each other results in the so-called Receiver-Operating-
Curves (ROC). Fig. 7. is shown as an example for the PNPR algorithm. The used
signal and room impulse response were the same as used in [2]; these are available on a
website 2.

4.1.2 Defining the true howling frequencies

A difficulty here is, how to define the “true“ howling frequencies and their quantity NP ?
The howling frequency is determined by DFT analysis of buffered signal frames with high
howling power and its pitch is controlled by ear and a sinus generator. Then the strongest

peak
picker

Graphic FFT
Analysis

Listening
Analysis

True
Feedback

Bin

x(t)

&

Figure 8: Defining the true howling bin per frame ωtrue(t)

bin in this region is assumed to be the howling bin. By analyzing the signal with the
peak picker (see 3.1), all peaks Dω(t) corresponding to this strongest howling bin ωtrue

2. ftp://ftp.esat.kuleuven.be/pub/SISTA/vanwaterschoot/abstracts/09-207.html



S. Braun: Feedback Detection 16

are assumed to be true howling and not so the rest. This process is schematically shown
in Fig. 8.

4.1.3 Problems of this simulation method

As in this method a precomputed audio file that already contains feedback is used to
calculate the feedback criteria from it, several problems arise:
– With increasing file length, the howling gets more prominent.
– In the sequence where the feedback level has already built up higher over the signal,

it is easy for the algorithms to detect the howling frequency.
– The false alarm rate is therefore dependent on the file length, respectively on how fast

the feedback builds up and is powerful in the signal.
With this method the criteria are only comparable, if one single audio file is used. As
audio material can differ drastically, the method is not objective for all sound sources,
only for the one specific tested case. For that reason another test scenario is developed
as follows.

4.2 New Simulation Environment

A feedback loop is built in the real-time software Pure Data with a defined impulse
response. As impulse resonse, a bandpass filter is used as a bell-peak filter at 1 kHz.
The filter h[n] is realized as FIR because of the ability, that it can be a linear-phase
filter. As the gain in the feedback loop gets close to 1, the gain at 1 kHz is greater
than 1 and howling occurs. As we know the shape of the feedback path, we can insert a
inverse filter g[n] to stop howling. The frequency responses of both filters are depicted
in Fig. 9. So everytime the feedback criterion detects the frequency bin of fi = 1 kHz,
the filter g[n] is inserted for 50 ms (slightly more than one hop-size duration), which
prevents the system from getting unstable. This way we can run the system as long as
we want, getting better statistical values.

0 0.5 1 1.5 2

x 10
4

−20

−15

−10

−5

0

frequency [Hz]

|H
| [

dB
]

 

 

G(f)

H(f)

Figure 9: Artificial room impulse response h[n] and compensation filter g[n]

We now can’t go for a hit rate, as the howling disappers everytime it is detected. Instead
we compute two other values to get a performance measure of the algorithms:
– The time between two hits is the detection time tD. We compute the mean value as

the mean detection time tD.
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– The signal power of the whole feedback loop. The longer the algorithm needs to
detect and cancel the right howling frequency, the higher the signal power rises.

The signal can influence the mean detection time tD since it can take longer for howling
to build up, if the signal power is very weak or zero right after the filter g[n] is deactivated.
The other way round, tD can be very short if the signal power is great. So if we take
the average signal power, we have a quite good measure for how much howling occurs
in the system, until it gets detected and cancelled.

To get a relative value, a second reference feedback loop is built with the filters h[n] and
g[n] always activated. We now measure the signal power of the actual feedback loop
ES(t) and the reference system Eref (t) and can get a relative power value in Eq. (42)
by dividing the mean values. E describes how much additional signal power is added by
howling because of the system being unstable.

E =
ES(t)

Eref (t)
(42)

The system is depicted in Fig. 10 with the actual feedback loop on top and the reference
loop below. Since the filter g[n] introduces a delay of d samples to the forward path, a
delay expressed as Dirac-Delta function δ[n] compensates the path without g[n]. The
only purpose of the reference loop is to calculate Eref . The gain factor a controls the
amount of feedback. If |ah[n]| > 1 for one frequency bin (1 kHz in this case), the system
gets unstable and starts howling at this frequency.

Figure 10: Feedback loop and reference loop. The detection algorithm switches the filter
g[n] in for 50 ms to keep the loop stable.
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Testsignals To reduce the effort of the simulation, three test signals are chosen. They
have already been presented in section 4.1. We chose only single instrument sources,
since in a given situation it is more likely that we have a close-miking setup. The three
test samples are the Violine, a singing Tenor and female Speech, that are labeled likely.

4.2.1 Additional criterion: HBPF

A new criterion is introduced because of the signal-interactive behaviour of this new
developed evaluation method. In contrast to the method proposed in 4.1, it matters
here especially in terms of the detection speed, that can’t be measured with the method
of section 4.1.
The detected howling frequencies Dh(t) are straight used to steer the set of notch-filters.
A further idea, how to lower the detection of false howling frequencies, is based on this
assumption: Only one frequency per time frame can be a true howling feedback, all
others are assumed to be false detected ones. To prevent this, only the Highest Bin Per
Frame (HBPF) from the set Dh(t) is taken, that means the howling component with
the greatest power. Using this additional criterion, only one notchfilter can be changed
or set per frame.

HBPF (ωh, t) = max
(
|X(ωh, t)|

)
(43)

Fig. 11 shows the signal flow graph including now all implemented processing blocks.
One or more of the 6 single criteria (section 2.1) can be combined with a a AND
conjunction. The following post-processors for IPMP and HBPF can be switched in
optional.

Figure 11: Calculation of the notch filter parameters Dh from microphone signal x(t)

5 Simulation results

5.1 First simulation method

The diagrams obtained with the first simulation method are similar to the reference
publication [2], but they can’t be reproduced exactly. Even when using the same signal
and impulse response in the feedback loop, they come close but some differences remain.
To compare the algorithms with different signals and impulse responses, we compute the
“Partial Area Under the Curve” (PAUC) for every realization.
We can observe, that the signal spectrum dependent criteria PHPR and PNPR are
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influenced by some characteristics of the signals or impulse responses, for example if
the howling frequency bin is shared with a harmonic part of the signal, or the howling
frequency lies exactly between two bins. For the other features, the tendencies remain
more constant in relative manner. The simplest features PTPR and PAPR seem to
be the best though.

5.1.1 Temporal development of Hitrate and False Alarm Rate

To get a little more insight into the temporal (frame-wise) behaviour of the algorithm,
we analyze the development of PD(t) and PFA(t). The hitrate can only reach a value
of 1 or 0 per frame, since we have only one true howling frequency. We calculate a
cumulative hitrate, which takes all hits until the actual point of time into account. For
the false alarm rate we do the same.

PD,cum(t) =
k=t∑
k=1

NTP (k)

NT (k)
(44)

PFA,cum(t) =
k=t∑
k=1

NFP (k)

NN(k)
(45)

PD(t) is a solid line, PFA(t) is dashed. For the female speech signal the temporal de-
velopment is shown in Fig. 12. A little algorithm was used to search for the “best”
threshold and parameter values of each criterion. It searches the highest possible PD at
a chosen max(PFA) ≤ 0.1.
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Figure 12: Temporal development of hitrate and false alarm rate

We can observe that an (exponential) growth of the curves against its final values.
While a PD-curve is growing, it detects the right howling bin; if it decreases, it looses
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the howling. IPMP has the smallest problem with losing the howling, because it is just
kind of a temporal smoothing filter. Fig. 12 also points out very good that the results
of the ROC-Curves differ, depending on the audiofile length. One can read the temporal
probability values by just cutting vertically through the curves at one specific point of
time.
The PAPR algorithm has found the true howling frequency from the beginning. But the
problem of this evaluation method is clarified most with the PAPR-curve: The longer
the audio segment is, the more PFA grows against zero. So this evaluation method
diminishes the evaluation emphasis of the critical phase, where the howling begins to
build up and is not louder than the signal. But this is the critical and essential phase of
such an algorithm. If the howling power lies already several dB over the signal power,
it is easy to detect the howling. The early phase where howling builds up, is where the
algorithms should later operate at, because if they detect howling, it will be immediately
notched out. That’s the reason why the second evaluation method in 4.2 is developed.

5.2 Comparison of CQT vs. DFT

By comparing three audiofiles using the same signal but three different impulse responses
with different howling frequencies (280, 506 and 6008 Hz), Fig. 18 shows a improvement
for the low frequency compared to Fig. 17. The middle (Fig. 15 & 16) and high
frequency howling ROCs (Fig. 13 & 14) show no significant change in performance.
The plots for the three situations are opposed with the usual DFT analysis on the left
and with CQT analysis on the right side.

If the computing power is available for a CQT analysis, the use in a detection system
might improve the performance. But if one can assume, that howling is not a problem
at lower frequencies < 500 Hz, the usage of a CQT analysis has no improving effect.
Also the needed computational power gets quite high, if a reasonable hop-size has to be
held. Fig. 13 - 18 were generated using a CQT analysis with 96 bins per octave. By
dropping the CQT resolution to 48 or 24 bins per octave, the advantage decreases.
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Figure 13: fhowl = 6008 Hz
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Figure 14: fhowl = 6008 Hz
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Figure 15: fhowl = 506 Hz
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Figure 16: fhowl = 506 Hz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PHPR

P
FA

P
D

 

 

m ∈  {2}
m ∈  {2,3}
m ∈  {2,3,4}
m ∈  {0.5,2,3,4}
m ∈  {0.5,1.5,2,3,4}

Figure 17: fhowl = 280 Hz
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Figure 18: fhowl = 280 Hz
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Figure 19: PHPR with CQT transformation 24 bins per octave (blue) and 48 (red),
fhowl = 280 Hz
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Fig. 19 shows the low-frequency howling file with 24 (blue) and 48 (red) bins/octave.
With 48 bins/octave there is still a small improvement to Fig. 17, using just 24 bins
might be a quality decrease. Another advantage of a CQT analysis is the variable window
length, decreasing with the frequency. This might be useful for a howling detection as
well, since lower frequencies build up slower than high frequencies. This corresponds to
the low hop-size of the CQT at the bottom and a high hop-size on the top.

5.3 New Real-time simulation method

Labeling of the evaluation plots in this section For reasons of saving space, the
labeling in the plots is kept short. Since most features have more parameters than just
the threshold T , they are abbreviated as listed in Table 2. The index i stands in mi for
the set of factors/adders and in Qi for the number of frames, the criterion operates on.

PHPR PNPR IMSD FEP
m1 m ∈ {2} m1 m ∈ {±2} Qi QM = i Qi QM = i
m2 m ∈ {2, 3} m2 m ∈ {±2,±3}
m3 m ∈ {2, 3, 4} m3 m ∈ {±2,±3,±4}
m4 m ∈ {0.5, 2, 3, 4}
m4 m ∈ {0.5, 1.5, 2, 3, 4}

Table 2: Labeling of the following graphics

5.3.1 Evaluation of single criteria

In this section we discuss the results of the second simulation method, described in 4.2.
As performance measures there are always two basic parameters to evaluate. Between
these one has to find a trade-off:
(+) How fast and secure the algorithm recognizes the howling, in the optimal case even

before it’s noticeable to a common audience. You can also consider the hit-rate as in
the first simulation.

(−) How many wrong howling frequencies are detected, which can destroy the sound
signal, if too many notches are set. This describes the false alarm rate.

To measure the detection speed, the mean time tD between correct detected howling
bins is plotted in Fig. 20. To avoid the problem described in 4.2 that tD is signal
dependent, the mean signal power expresses the same tendencies without correlating
with the signal pauses (see Fig. 20 and 21). Unfortunately the units of E in dB are not
as intuitive to read as tD, but the tendencies are the same and therefore it should be
considered a better and more appropriate performance measure.
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Figure 20: tD for the single criteria with different Thresholds T

  10  20  25  30  20  30  40  45  20  30  40  45    3    5    7   10    3    5    7   10    1  0.5 0.2 0.1 0.5 0.60.65
0

1

2

3

4

 

ad
di

tio
na

l s
ig

na
l p

ow
er

 [d
B

]

Violine

T =
PAPR PHPR m

2
PHPR m

4
PNPR m

1
PNPR m

3
IMSD Q

6
FEP Q

6

Figure 21: E for the single criteria with different Thresholds T

First the false alarm rate is calculated for every frame after

PFA(t) =
NFP (t)

NN(t)
. (46)

Now we can analyze the statistical spread of PFA(t), shown in Fig. 22 as boxplots. It
implies that with increasing thresholds within each criterion, the spread diminshes. Since
the same tendencies are represented by just taking the average over time of PFA(t), we
found a value to represent the false alarm properly. To take care of the outliers or the
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Figure 22: statistical spread as boxplot for PFA(t)

maximum PFA(t), that occurred in one frame, we combine average and maximum value
with a weighting after Eq. (47). Fig. 23 shows how the new built representative false
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alarm rate P∼
FA consists of the blue mean value and the red maximum.

P∼
FA = 0.9 · P FA + 0.1 ·max

(
PFA(t)

)
(47)
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Figure 23: Combination of average and maximum value to P∼
FA

5.3.2 Evaluation of additional post-processing criteria IPMP and HBPF
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Figure 24: Improvement through
cascade with HBFP and IPMP fea-
tures

Fig. 24 shows how the addition of the optional
cascaded features improves the performance. The
diagram uses already the new developed evaluation
method in advance, which is explained in chapter
4.2 in detail. The false alarm rate P∼

FA is plotted
against the average additional signal power caused
by instable feedback E. The optimal point is there-
fore in the lower left corner.
The single PHPR criterion with harmonic fac-
tors m ∈ {2, 3} is drawn in blue for four different
thresholds. The addition of the HBPF -feature
(green) shows a significant improvement: the false
alarm rate is and even the additional signal power
is reduced. The cascade of IPMP with PHPR
(red) reduces for three data points also the false
alarm rate. E is slightly higher. The addition of
both features at the same time (cyan) reduces the false alarm rate dramatically on the
cost for a higher E.
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5.3.3 Comparison and evaluation of the best performing features

These two representative tradeoff-measures - E and P∼
FA - can be plotted against each

other to obtain similar diagrams as in the first simulation method in chapter 5.1, but
mirrored horizontally. For three different signals, this depicted in Fig. 25, 27 and 29
comparing the single criteria.

In a practical case we want a criterion that delivers the notchfilter-parameter set Dh with
a quite low false alarm rate, otherwise we still have to add another post-processing and
election of the delivered howling bins. Therefore most of the single-feature criteria are
not good enough anyway, only the PAPR and PHPR with m4 are settled in a resonable
ratio. So we have a look mainly at the combined features. Since the maximum number
of outputs of the peak picker is

|Dω(t)|max = 40, (48)

we aim at features, that hold a false alarm rate

P∼
FA <

1

40
= 0.025. (49)

This means that the feature detects in average not more than one false howling frequency
per frame and the number of maximum false frequencies doesn’t exceed to excessively.
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Figure 25: performance of single feature
criteria with different thresholds
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Figure 26: combined features

Figures 26, 28 and 30 show some combined features, that hold the in Eq. (49) postu-
lated criterion. The numbers inside the circles label different criteria combinations and
threshold settings. They are listed in Tables 3, 4 and 5 with the threshold values as
subscripts. The additional power E cannot be taken into account as absolute measure
to compare between the different used signals. But most of the features stay more or
less constant regarding their relative position for the each audio file. The combinations
of PHPR, PNPR and HBPF (label 3&4) and the combinations of the three best single
features (label 10) seem to be stable and deliver reasonable results.
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Figure 27: performance of single feature
criteria with different thresholds
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Figure 28: combined features
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Figure 29: performance of single feature
criteria with different thresholds
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Figure 30: combined features

plot label feature P∼
FA [%] E [dB] tD [ms]

1 PHPR10 PNPR10 HBPF 1.45 1.88 867
2 PHPR20 PNPR10 HBPF 2.15 1.58 485
3 PHPR30 PNPR10 HBPF 1.13 1.72 624
4 PHPR20 PNPR10 IPMP 1.46 2.71 1216
5 PHPR15 PNPR5 IPMP HBPF 1.18 2.33 1049
6 PAPR20 PHPR15 HBPF 2.31 1.69 910
7 PAPR25 PHPR25 HBPF 2.20 1.70 910
8 PAPR25 PHPR25 IPMP 1.54 2.80 1597
9 PAPR20 PHPR20 IPMP HBPF 1.58 2.33 1207
10 PAPR30 PHPR30 PNPR10 1.71 2.13 1374
11 PAPR30 PHPR30 PNPR10 HBPF 1.45 2.27 1445

Table 3: Violine: Results of best features
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plot label feature P∼
FA [%] E [dB] tD [ms]

1 PHPR10 PNPR10 HBPF 1,92 2,67 665
2 PHPR20 PNPR10 HBPF 1,42 3,30 307
3 PHPR30 PNPR10 HBPF 0,68 6,70 1037
4 PHPR20 PNPR10 IPMP 0,64 12,74 908
5 PHPR15 PNPR5 IPMP HBPF 0,40 11,57 756
6 PAPR20 PHPR15 HBPF 1,60 5,60 374
7 PAPR25 PHPR25 HBPF 1,21 5,93 462
8 PAPR25 PHPR25 IPMP 0,57 12,22 1067
9 PAPR20 PHPR20 IPMP HBPF 0,40 11,39 736
10 PAPR30 PHPR30 PNPR10 0,44 8,44 701
11 PAPR30 PHPR30 PNPR10 HBPF 0,45 8,40 694

Table 4: Speech: Results of best features

plot label feature P∼
FA [%] E [dB] tD [ms]

1 PHPR10 PNPR10 HBPF 2.02 2.45 299
2 PHPR20 PNPR10 HBPF 1.81 2.40 309
3 PHPR30 PNPR10 HBPF 1.47 2.91 452
4 PHPR20 PNPR10 IPMP 1.42 10.34 723
5 PHPR15 PNPR5 IPMP HBPF 0.80 9.37 711
6 PAPR20 PHPR15 HBPF 2.01 2.24 426
7 PAPR25 PHPR25 HBPF 1.77 2.27 438
8 PAPR25 PHPR25 IPMP 0.73 7.07 847
9 PAPR20 PHPR20 IPMP HBPF 0.85 6.57 647
10 PAPR30 PHPR30 PNPR10 0.58 3.23 611
11 PAPR30 PHPR30 PNPR10 HBPF 0.58 3.11 593

Table 5: Tenor: Results of best features
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5.4 Subjective evaluation with PD patch

A patch is developed in Pure Data for a real-time subjective evaluation. Two options
corresponding to the evaluation methods are available:
– Feedback_Detection_only.pd: A “static” implementation, where a audiofile con-

taining a growing howling component is played back. The algorithm detects the
howling and attenuates it down via notchfilters.

– fb_sim_and_cancel.pd: A “dynamic” implementation containing a feedback loop
with a measured room impulse response. After having chosen the algorithm and
setting it up, a signal can be played back through a feedback loop. By turning up
the feedback gain, the system starts to get unstable and to howl. If the algorithm is
set up properly it will detect the howling and set a notchfilter, so that the system is
stable again.

Fig. 31 shows the graphical user interface to set up the threshold values and parameters
of the different algorithms. It is possible to use three of the “usual” criteria that are
AND-conjuncted. The IPMP and HBPF features can be switched in separately.
The 20 notch-filter gains and center frequencies are displayed on the bottom. The
number of detected frequencies can be observed in the orange field on the right. These
displays make it easier to keep track of the momentary state and support the listening
impression. The observation of false detections is quite interesting.
If the HBPF -feature is switched off, it is useful to use more than one detection features
with higher threshold values. Otherwise it can happen, that up to all 20 notch-filter
parameters are changed quickly. This degrades the audio signal extremely and the audio
processing of PD could get stuck by too high CPU load.

Figure 31: GUI of the PD-patch to set up the detection algorithms
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Notch-filter design The control and design algorithm for the bank of 20 notch-filters
is kept as simple as possible. Nevertheless, it this algorithm is essential for a subjective
good performance of the howling canceller, so some tweaks are listed here.
– Blocksize: N = 2048 samples, N/2 overlapping, fs = 441001

s
.

– Fixed notch-filter bandwidth: 1
30

octave.
– If a frequency is within the bandwidth, where already a notchfilter was or is set, the

same existing filter with its center frequency unchanged is used.
– Gain-reduction value: -3 dB. Everytime a new or before existing howling frequency

is detected, the corresponding notch-filter gain is reduced by -3 dB until a maximum
value of -30 dB.

– Gain-make-up value: +2 dB. If a notch-filter gain was not reduced for some consec-
utive frames, the filter gain is made up by +2 dB again until it reaches 0 dB or is
reduced again.

– Time constant: 2 sec. Make-up gain by +2 dB after 10 frames, if no corresponding
howling frequency is detected.

This design ensures a smooth operation of not too fast gain reductions, which can annoy
the listener. After some time, notch-filters are taken out again, if they are not needed
anymore. This can be due to a change of the room situation. If a feedback frequency
would be always present, it levels to a stable reduction value.

6 Conclusion and outlook

By implementing and examinating the most common feedback howling detection crite-
ria, a good overview of the state of the art is gathered. A new, more stable method
for evaluation is developed and applied. Moreover, a method to estimate the feedback
loop gain by using a second microhpone is proposed, but could not be tested sufficiently
within the framework of this work.
The most effective algorithms focus on the short-time spectrum. The incorporation of
temporal features gives a little more stability (i.e. reduction of false alarm), but at the
cost of a much slower reaction time.

To get a perceptual motivated evaluation of the algorithms, a subjective listening test
should be considered for future work. But that includes also strongly the notch-filter
controlling and design. The effects of spectral distortion by setting unneeded notch-
filters is an important information to design a good algorithm. Since the algorithms are
coded in Matlab and Pure Data, they can form the basis of a following research and
develop a more advanced method to control and design the notch-filter parameters.
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