
DIPLOMA THESIS

User-oriented development of an
universal hardware controller
for graphical user interfaces

of audio software

Benedikt Bengler
—————————————-

Institute of Electronic Music and Acoustics

University of Music and Performing Arts Graz, Austria
Graz University of Technology, Austria

Advisor: Prof. Dr. Gerhard Eckel
Co-Advisors: Dr. Werner Magnes and Prof. Dr. Gunter Winkler

Assessor: Prof. Dr. Gerhard Eckel

Graz, February 2011



Abstract

This project aims at developing a touchscreen-based device which enables the
user to operate all virtual control elements of graphical user interfaces by han-
dling a physical hardware controller. A fully functional prototype will be built being
available at the IEM afterwards.
The user shall be enabled to access every virtual on-screen control via the touch-
screen and to control it precisely using an on-board hardware encoder. Further-
more, no additional software will be required while the controller works regardless
whether an external hardware control is supported or not.
In this way the all-purpose controller shall enable a task-oriented and intuitive
handling of audio software applications.
An important aspect is an user-oriented development process which incorporates
the future users already in the system design. By this means it should be ensured,
that the development is significantly driven by the requirements of its users. Also
the user interaction and the interface are going to be developed incorporating
methods of the fields Human Computer Interaction respectively Interaction De-
sign.
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Kurzfassung

Ziel dieser Arbeit ist es, einen touchscreenbasierten Controller zur Steuerung von
Audioanwendungen mit grafischer Bedienoberfläche zu entwickeln. Im Rahmen
dieser Arbeit soll ein voll funktionsfähiger Prototyp entstehen, der in weiterer Fol-
ge dem IEM zur Verfügung steht.
Er soll dem Benutzer ermöglichen, jedes virtuelle, grafische Steuerelement einer
Softwareanwendung ber den Touchscreen auszuwählen, um dieses dann direkt
und präzise mit einem controllereigenen Hardwareregler zu bedienen. Hierbei
soll der Hardware Controller jedoch nicht auf die Unterstützung der entsprechen-
den Softwareanwendung angewiesen sein und unabhängig davon funktionieren,
ob diese für einen gewünschten Parameter die Kontrolle durch externe Hardware
vorsieht oder nicht.
Auf diese Weise soll ein flexibel einsetzbarer Hardwarecontroller entstehen, der
eine intuitive und aufgabenangemesse Steuerung von Audioanwendungen ermög-
licht.
Ein besonderes Augenmerk liegt auf einem benutzerorientierten Entwicklungs-
prozess, der die zukünftigen Nutzer bereits in die Systemgestaltung miteinbe-
zieht. Dadurch soll gewährleistet werden, dass die Entwicklung maßgeblich durch
die realen Anforderungen der zukünftigen Nutzer bestimmt wird. Auch Interakti-
on und User Interface sollen mit Hilfe von Methoden aus den Disziplinen Human
Computer Interaction bzw. Interaction Design entwickelt werden.
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“Technology, like art, is a soaring exercise of the human
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Chapter 1

Introduction

1.1 Basic idea

The aim of this work is to develop a hardware controller for computer music ap-
plications. The basic idea is to realize a control concept allowing to use the hard-
ware immediately with any desired software without configuration. It should not
rely on the support of the particular application and provide access to all of its
available parameters.
The hardware controller - named Zeus Control - features a touchscreen as a cen-
tral component and gets connected to a computer via VGA and USB. Around the
screen several physical controls are grouped.
The Zeus Control enables its user to select any virtual control element via tapping
it on the screen and regulate it with one of the Zeus’s physical controls immedi-
ately. Virtual control elements can be control dials, sliders, X/Y pads as well as
number boxes1.
The universal functionality is given by the fact that operating systems having a
graphical user interface (GUI) provide the mouse pointer as a standardized in-
put device. Therefore all applications share the same control concept to handle
user input. The core functionality of the Zeus control is to emulate these control
data appropriately. The software application interprets the incoming data as usual
mouse data and the desired parameter is controlled in relation to the user’s input
via the physical controls.

1A number box is a control element holding a parameter value that can be changed by mouse
or keyboard input
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1.2 Related work: “Mouse for Intuitive Media Soft-

ware Control”

This basic functional principle has already been utilized in a previous project: The
goal was to re-design the artifact “computer mouse” in a way that allows the user
to control all on-screen parameters in a tactile and intuitive way. The user just has
to move the mouse to a virtual knob or fader and is immediately able to control it
with the hardware encoder placed on the mouse. As no configuration or mapping
procedure is needed to make use of this additional feature, it perfectly fits into the
plug & play concept of a computer mouse. Due to its special shape, the knob can
be handled from the hand’s basic position while the mouse can be used as usual.
Even if the Zeus concept shares the same basic principle, the context of use
as well as the technical realization differs significantly from the mouse project:
Instead of enhancing a “standardized” input device, the Zeus approach aims at
providing an interaction environment for musical computing.

Figure 1.1: Mouse for Intuitive Software Control - Functional prototype
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1.3 Combining touchscreen and physical controls

for musical computing – a motivation

In the early 1980’s a paradigm shift occurred in how to interact with comput-
ers: Direct-manipulation2 interfaces replaced complex command-line interaction
by manipulating visible objects directly on the screen. This new interaction style
supported rapid, incremental operations providing instantaneous feedback. Es-
pecially the use of real-world metaphors (e.g. “desktop”, “trash can” or “window”)
made it much easier for users to learn and handle software applications.
For many years the mouse remained the main interaction tool for desktop com-
puter systems. But over the last years the touchscreen became more and more
relevant as an input device for different kinds of applications. Isn’t the touchscreen
the most suitable interaction tool for direct manipulation anyway?
Instead of the relative control behavior of a mouse or a track pad, a touchscreen
provides a direct relationship between the physical input, its caused action, and
the graphical feedback: Graphical and physical interface become the same. This
enables a direct and intuitive interaction as well as a rapid performance. It takes
less to select a target on the screen as compared with a mouse – at least if the
touch target exceeds a minimum measure [Sears and Shneiderman, 1991].
When during the 1990’s the emerging computational power made real-time audio
processing possible using desktop computers, studio technology has increasingly
been transferred into the digital domain. Also the established user-interfaces
were reproduced in every detail: Previous physical controls like buttons, rotary
encoders, sliders or joysticks became the main control elements of audio applica-
tion’s graphical user interfaces constrained to be operated by a mouse. So why
not resuming the direct access via touchscreen control?
Even if touchscreen interaction is very suitable for discrete control tasks like se-
lecting items or actuating buttons, virtual controls for continuous tasks are a rather
poor match compared to their physical archetypes. Their lack of precision and
tactile feedback makes fine-grained parameter manipulations quite difficult and
prone to error – an unsatisfying fact, especially with respect to to musical tasks.
Therefore, it seems promising to combine the best of both input strategies: The

2The term direct manipulation was coined by Ben Shneiderman in his seminal publication:
Direct manipulation: a step beyond programming languages, published in IEEE Computer in 1983
[Shneiderman, 1983]
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direct and intuitive access of a touchscreen and the accuracy and the tactile feed-
back of a physical control.
Even if the Zeus concept has been developed intuitively, its basic idea is nicely
illustrated by an user study of Fiebrink, Morris and Morris [Fiebrink et al., 2009].
They conducted an user evaluation of an interactive tabletop system for simple
audio editing tasks. The users were free to use the direct-touch controls of the
tabletop interface or to map them freely to a set of physical controls (knobs and
buttons). As a result, most continuous parameters were re-mapped to physical
controls while almost all discrete task were executed directly on the screen.

Figure 1.2: Scenario of use
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1.4 A multidisciplinary development approach

In terms of its research context, the Zeus Control development can be assigned to
the field of Sound and Music Computing (SMC). By combining scientific, techno-
logical and artistic methodologies SMC is a multidisciplinary approach to computer-
based music and multimedia technology 3. One of the key research issues relates
to the improvement of human interaction with sound and music – a topic that di-
rectly refers to the development of new musical interaction devices like the Zeus
Control.

Figure 1.3: Related fields of research

The design and development of such a control device is a highly multidisciplinary
task. In order to implement a novel, fully functional hardware controller utilizing an
user-oriented approach, knowledge, methods, and techniques of several different
disciplines are incorporated into its design process. The technical aspects of the
development relate to the fields of software engineering, electrical engineering as
well as mechanical engineering. The user-oriented design process is based on
strategies of usability engineering and interaction design. The design of the user
interaction and the interface is driven by methodologies of human computer inter-
action and interaction design while considering design theory and ergonomics.

3A comprehensive overview of the research field can be found in the “Roadmap for Sound
and Music Computing” by the S2S2 Consortium. The document can be downloaded at:
http://smcnetwork.org/roadmap (accessed 30.01.2011)
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This multidisciplinarity becomes a key issue of the Zeus Control development aim-
ing to combine knowledge and methods of diverse research fields in terms of an
overall goal – creating an innovative and practical controller for music computing.
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Chapter 2

Methodological framework for a
user-centered design process

The user-centered design approach is motivated by the challenge to develop a
basic idea into a fully functional device that really suits its intended context of
use. Involving users in the design process ensures a development significantly
driven by the real needs of its future users. This approach relates to the entire de-
velopment process and serves as an organizing principle. Therefore its structure,
the used methods and their goals have to be formulated in advance.

2.1 Defining the process model

The process model provides the basic structure for the development progress (fig.
2.1).
I utilized the process model “Usability-Engineering” of Sardonick and Brau as a
guideline for developing a basic project schedule [Sardonick and Brau, 2006]. My
process model consists of three phases: Analysis phase, concept phase and im-
plementation phase. All of them contain specific activities to involve the user in the
design process. In the analysis phase general conditions like the fields of appli-
cation and the user requirements are to be detected. Beside that, currently used
systems are examined. The concept phase is meant to combine the results of the
analysis with the technical possibilities to develop the conceptual framework. In
the implementation phase the concept is realized step by step accompanied by
user testing.
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Moreover, I want to incorporate three terms into my process model which were
coined by Löwgren and Stolteman [Löwgren and Stolteman, 2004]:Vision, oper-
ative image and specification. I consider them as very helpful to describe and
communicate the creative aspects of the design process. These terms can be
understood as three levels of abstraction in the design process. The vision is the
initial idea that activates the whole process – in this case combining touchscreen
interaction with physical controls. The operative image is the first externaliza-
tion of the vision: A documentation of the basic idea being concrete enough to
share the vision but flexible enough to provoke new ideas and diverse solutions.
Therefore the operative image becomes the essential communication tool in the
analysis and concept phase. Once the operative image of a particular system
component is elaborated enough it can serve as specification for its implemen-
tation. Theses terms are considered when describing the design process in the
following chapters.

Figure 2.1: Process model for the Zeus development
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2.2 A dynamic design approach

The process model of the Zeus development incorporates the very structured
approach of having different consecutive phases as well as Löwgren and Stolte-
man’s approach who perceive the design process as a dialectical process. For
them the way from the vision to the final implementation can neither be described
as a linear nor as an iterative process. Vision, operative image and specifications
influence each other continuously in a fully dynamic dialectical process.
The way I combined both approaches – seeming contradictory at first – is to ap-
ply them on different layers: The clearly defined phases are used to structure all
practical and organizational issues of the design process. They serve as an orga-
nizational principle helping to time specific activities like user tests or intermediate
presentations. Beside that, the well-structured approach allows to communicate
and document the design process in a clear and reasonable manner.
Within this basic framework I utilize the approach of Löwgren and Stolteman as a
principle concerning the creative issues of the design process. Generating new
ideas and finding solutions for particular problems is an overall process that can
hardly be restricted to a certain phase. Moreover, they result from a dynamic
interplay between previous ideas, new findings and the current design situation.
For instance, a newly implemented sub-system enables a specified user testing
which can evoke entirely new ideas that affect and change the previously defined
concept. Therefore the dynamic dialectical approach is far more realistic to char-
acterize the creative decision making. Being responsive to the current situation
and open to re-think and question previous ideas throughout the whole design
process allows to tap its creative potential. This attitude can be characterized
by the term “reflection-in-action”, coined by Donald Schön, describing a continu-
ous reflection and adaption while being actively engaged in a practical process
[Schön, 1987].
As this dynamic approach is difficult to describe adequately in the following chap-
ters, which correspond to the three phase model, I try to illustrate the creative
reasoning as part of the design process in chapter 6 presenting several concrete
examples.
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Chapter 3

Analysis phase

3.1 Aim and approach

The aim of the analysis phase is to lay the foundations for a concept development
that meets the user requirements. These are related to the users’ intended tasks
as well as to their general working conditions.
Before entering into a dialog with the users I created a first operative image con-
taining a functional description and a first conceptual sketch to communicate my
ideas. The analysis phase was carried out using a focus group approach: I in-
vited the staff of the IEM – the main users of the future system – to a meeting at
the institute. The focus group consisted of about 15 people. In the first part of
the meeting I presented the idea and related the Zeus Control to other controller
concepts in order to illustrate and classify its functional range. This discourse is
transcribed in the following section.
The presentation and classification served as a basis for the elicitation of the user
requirements. These were identified with the aid of guiding questions as well as
in an open discussion. This progress is documented in section 3.3.
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Figure 3.1: Zeus Control - First conceptual sketch

3.2 Classification of the concept with regard to other

solutions

3.2.1 Established controllers: Mouse, MIDI and DAW Control

Established control devices for computer music applications range from the mouse
to various kinds of MIDI1 controllers up to extensively equipped hardware surfaces
for Digital Audio Workstations (DAW).
The mouse is such a integral part of today’s graphic-based computer systems
that it is not considered as a separate controller. Being our standardized input
device its superordinated control mechanism is supported by all software appli-
cations providing a graphical user interface. In the field of audio software most
GUIs still refer to real hardware devices. Therefore, they are mostly dominated
by established control elements like potentiometers or sliders. Operating these
with a mouse, the handling in terms of precision and smoothness is significantly

1MIDI is the abbreviation for Musical Instrument Digital Interface and is the most common pro-
tocol for communication between electronic musical instruments, computers, and control devices.
The original specification for the serial MIDI protocol was defined in 1982.

21



poorer compared to their realization in hardware.
Using one of the many available MIDI controllers allows the user to map several
parameters to their hardware controls as long as the parameters are supported
by the application’s MIDI implementation. In a configuration progress selected
parameters get explicitly assigned to the available controls of the MIDI device.
Large hardware controllers are mostly characterized by a high degree of inte-
gration into the software system they are built for. This provides comprehensive
interaction possibilities implemented using extensive input and feedback devices
like motor faders, LED ring-equipped rotary controls or embedded displays. Such
a system is most efficient if utilized for established audio engineering tasks like
multi-track production. However, due to their preassigned functionality they are
only suitable to a limited extent for other musical applications.

3.2.2 New technologies: Tangible and Multi-touch interfaces

In the recent past also new technologies started to appear in the field of musical
computing: Tangible user interfaces2(TUI) or multi touch technology expand the
possibilities of how to interact with audio software. The main advantage of both
approaches is that they enable bimanual control of several parameters accompa-
nied by rich graphical feedback. In this way entirely new interfaces for musical
interaction can be realized. The downside of both technologies is, however, that
at present these kind of input devices are not supported natively by any common
music software application. Even if some technical preconditions like integrated
multi-touch capabilities found their way into common operating systems, a stan-
dardization of these input devices is not yet in sight3. Therefore a multi-touch
or TUI control interface has to be implemented individually for every application.
Even if rewarding for special applications, not every musician is able or willing to
first create the tool he or she wants to use.

2A tangible user interface enables to control digital information via a physical representation
that can be directly manipulated by the user. A well-know, musical TUI application is the tangible
synthesizer reactable developed by the Music Technology Group (MTG) of the Universitat Pompeu
Fabra in Barcelona (http://mtg.upf.edu/ (accessed 20.12.2010)).

3Multi-touch and physical controls: Even if multi-touch technology will be standard in the near
future, a basic problem of touchscreen interaction – the lack of precision and feedback regarding
continuous tasks – will remain. Therefore, the combination of touchscreen interaction and physical
controls is equally relevant to multi-touch systems
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3.2.3 Defining the Zeus control’s profile

A design avoiding all drawbacks of the other solutions while combining all their
advantages is unrealistic to a high extent. Hence, I think it is important that a
newly developed artifact is clearly positioned within its related field. Thus, impor-
tant questions are: What are its crucial advantages? What are potential weak-
nesses compared to other solutions? How can these be resolved? This reflecting
process serves as a crucial tool to provoke new ideas how to use, extend and
improve the device.
As there is no ’swiss army knife’ solution, I think it is important to consider poten-
tial flaws as well as to reflect how these can be bridged in future use.
A key consideration is that since the Zeus Control is based on the control mech-
anism of a computer mouse, all virtual controls can be operated immediately. But
in contrast to the mouse, it provides appropriate haptics for musical tasks: The
rotary encoder and the sliders enable a smooth and fine-grained control of mu-
sical parameters. However, compared to a MIDI controller no configuration or a
restriction to MIDI-compatible parameters is needed.

Figure 3.2: Defining the controller’s profile
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At large controllers not just the controls for continuous parameters, but many
other functions of the software interface are duplicated in hardware: One thinks
of all kinds of buttons, displays or metering. This redundancy should be avoided
by the touchscreen setting the focus on the software’s graphical interface itself
as the center of interaction. Beside continuous parameters, also discrete ones
like function buttons can be directly controlled via the touch interface. In this way
the spatial and structural separation of the graphical and the haptic interface dis-
appears. The close relation of haptic input and graphical feedback supports an
intuitive and coherent interaction causing a low cognitive workload.
But as the immediate and universal functionality is based on the mouse mecha-
nism, a simultaneous control of several parameters may is inherently impossible.
However, dual parameter input is available for two-dimensional, virtual controls
like X-Y pads often used for panners, equalizer curves or effect parameters.
So how significant is this limitation in terms of the context of use? The Zeus
Control can be considered as an interaction environment rather than a separate
controller like e.g. a MIDI box. The essential computer peripherals monitor and
mouse are directly integrated into the system and enhanced with new possibili-
ties of how to interact with one’s familiar software. Therefore, the Zeus Control
does not compete with established solutions like a MIDI box or a DAW control. It
is a kind of enhanced computer peripheral combining display and universal input
device – both components that can hardly be replaced by an external controller.
Due to these reasons, the limitation regarding multiple parameter input can be
balanced considering the Zeus Control as an universal peripheral for musical
computing that enables immediate control of every off-the-shelf application with-
out configuration. Furthermore, the system can easily be combined with estab-
lished concepts like MIDI – to their mutual benefit. An appropriate scenario could
be a DAW-based mixing process. Using a MIDI fader bank for simultaneous level
adjustments and the Zeus Control for all other parameters of the DAW and the
used plug-ins would result in a compact but comprehensive mixing system.
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3.3 Elicitation of user requirements

In order to incorporate the specific demands of the IEM into the development
from the very beginning, a user survey was conducted right after the project kick-
off presentation. Therefore several guiding questions have been prepared in ad-
vance. These were meant to discern important demands of the future users while
structuring the focus group discussion. The five guiding questions were:

• Which operating system would you prefer to use the Zeus Control with?

• What kind of software do you like to control?

• Where do you see potential fields of application?

• What technical features would you appreciate?

• What are your ideas and suggestions?

Everybody in the group had the possibility to answer these questions which also
served as basis for a collective brainstorming session in the following. The indi-
vidual responses were instantly compiled and visualized with a digital mind map
tool (fig. 3.3). Beside that, the meeting was videotaped to document the discus-
sion and capture details.
Using a moderated focus group survey as an evaluation method for the analy-
sis phase turned out to be a good choice. Beside exposing the most important
requirements, ideas were generated that strongly influenced the further develop-
ment process. The most striking example is the idea to realize the touchscreen
driver entirely in hardware in order to avoid a driver implementation for several
operating systems. Even if the focus group and I discarded this suggestion as
not being feasible, it remained in my memory. Reconsidering this idea several
times during the design process in context of newly acquired, technical knowl-
edge made it possible to finally realize this lasting idea yielding a unique solution.
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Figure 3.3: Mindmap of the focus group discussion
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Chapter 4

Concept phase

sectionAim and approach Based on the results of the analysis phase, a concept is
developed combining the technical possibilities with the actual user requirements.
Guided by the results of the focus group discussion, appropriate solutions for the
particular requirements are found and integrated into the overall concept.

4.1 Evaluation of the focus group survey

In the following I want to point out especially two user requirements as they have
the most significant influence on the technical concept: Cross-platform compati-
bility and operating reliability. The remaining demands will be covered in section
4.1.3.

4.1.1 Cross-platform compatibility

It appeared in the discussion that the Zeus Control should work under all operat-
ing systems used at the institute. These are Windows, Linux and OS X.
With regard to the conventional way to develop external hardware for personal
computers this requirement is quite demanding: Normally a separate software
driver for each operating system is needed according to their different specifica-
tions. In order to avoid an individual driver development for all three systems, the
idea was to implement the Zeus Control as a Human Interface Device 1 (HID) as

1A HID is a device that belongs to the USB human interface device class describing devices
such as mice, keyboards, joysticks or game controllers. The USB HID class is defined in the
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the corresponding HID class drivers are already integrated in the common operat-
ing systems. If this would succeed, the implementation of the Zeus Control as an
universal peripheral for musical computing could be realized in the most elegant
way: Without the need to install drivers, the controller would work as a universal,
cross-platform, plug & play device.
This strategy is highly suitable for generating appropriate mouse data according
to the user’s input at the physical controls: The Zeus Control is recognized as a
standard, HID compliant mouse by the host computer. During a control process
relative mouse data are sent to the host in order to increment or decrement the
actual cursor position while the status of a pressed left mouse button is reported.
In this way all virtual controls of a GUI can be operated via the physical ones.
The main difficulty of this solution scenario is the implementation of the touch-
screen: Instead of relative control data, the absolute screen position of the finger
is required. But as the touchscreen’s sensor overlay is detecting and transmitting
the touch position related to its physical, spatial coordinates (touch coordinates),
a further processing step is needed in order to convert the touch coordinates into
absolute screen coordinates dependent on the chosen display resolution. This
task is normally accomplished by a software driver.
Therefore, the question arose whether this coordinate mapping is at all possible in
hardware – especially if the device should be plug & play. The main problem here
is that in contrast to a software driver the actual screen resolution is unknown.
The first potential solution I aimed to realize was to find a way to determine the
screen resolution with the hardware in order to convert the touch coordinates
into absolute screen coordinates. By reasons of the user requirement Operating
reliability, which will be addressed in the next section, the Zeus Control has to
be able to serve as a host for a computer mouse. The idea was to implement
a small, Java-based, cross-platform application that is able to detect the current
screen resolution and generate a scaled, graphical calibration mask. In a cali-
bration procedure the hardware could determine the ratio between the absolute
touch position and the relative displacement of the mouse cursor by matching the
absolute data of several defined calibration points with the relative data of the con-
nected USB mouse. In the following the controller could send every touch screen
position as a relative cursor displacement using the conventional mouse proto-

Device Class Definition for HID 1.11 by the USB Implementers’ Forum [USB-IF, 2001a].
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col. Even if this solution avoids the problem of the unknown screen resolution,
several problems occur: The standard mouse protocol specifies the maximum
displacement per mouse report as 127 (7-bit) in x and y direction. In order to
send displacements greater than 127, the controller had to decompose the value
and send it using several, consecutive mouse reports. Another problem is that
the sent values just result in same displacement in pixels if the cursor behavior is
not further modified by the operating system: Common mouse modifications like
“enhanced acceleration” or adjusted speed settings have to be deactivated to en-
sure a correct execution. Struggling with these mentioned drawbacks during the
implementation process I reconsidered the USB mouse protocol specifications
when discovering a feature that seemed worth to change the entire strategy:
It is possible to modify the HID Mouse Report Descriptor that describes the func-
tionality and report data structure of the device. In general, this information is
needed by the host to communicate with every HID device correctly. Modifying
the Mouse Report Descriptor allows to indicate that the sent data are absolute val-
ues. In addition, the resolution of the touch coordinates has to be transmitted to
the host. The detailed modifications of the descriptor are shown in appendix A.3.
Knowing the range of values the HID Mouse Driver is able to convert the touch
coordinates into appropriate screen coordinates in consideration of the current
screen resolution.
In this way the standard mouse driver can also be used as a driver for the con-
troller’s touchscreen. This solution is a perfect fit for the intended cross-platform,
plug & play approach.

4.1.2 Operating reliability

Operating reliability refers to the avoidance of unintended input. This requirement
is highly relevant, in particular for live performance situations.
If controlling graphical interfaces initially designed for mouse input via a touch-
screen, unintended input can occur easily. For example, if the user touches a
number box in Pure Data2 multiple touch events are generated caused by the
size of the finger tip (coll.: “fat finger problem” ). This results in an unintended

2Pure Data is a graphical, open-source, real-time programming environment for computer mu-
sic, audio, video and graphic processing. The programming language has initially been developed
by Miller Puckette at the IRCAM: It is comprehensively used at the IEM and has also been ex-
tended by the institute. (http://puredata.info/ (accessed 01.02.2011))
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parameter change: The value of the touched number box fluctuates erratically
around its previous value. In this way the user already changes the parameter
unintentionally during its selection.
However, unintended input can also occur during the control process:
The operating system is determining the current cursor position superposing all
incoming data of relevant devices like mouse, touch pad or touch screen. There-
fore erroneous data can occur if the control data generated by the Zeus Control
are not synchronized with the data of the touchscreen or a connected mouse. A
possible example is: A new position on the touchscreen is selected while the con-
troller transmits the status of a pressed left mouse button as one of the physical
controls is used. This would correspond to the input of a mouse that is moved
all across the screen while the left button is pressed causing various unintended
input events which have to be avoided in any case.
To enable an error-free on-screen selection of virtual control elements, two strate-
gies can be considered: One is to resemble the “hover mode” of a mouse: Instead
of sending successive touch events as long as the screen is touched just the po-
sition data are sent to the host. In this way the user is able to safely navigate
the cursor across the screen. In order not to lose the directness of touchscreen
interaction, a single touch event is sent for the initial touch position. Hence, the
user can operate discrete tasks like clicking buttons directly. To enable a smooth
and intuitive transition between this save “initial touch mode” and a mode that al-
lows continuous tasks like dragging objects across the screen, a specific solution
emerged during the development process: Beside serving as physical controls for
continuous input, the two neoprene sliders act also as activators for touch events.
Due to their size and position being easily accessible, the user can touch them
at any position while dragging her/his finger on the screen to trigger continuous
touch input.
The second approach is a touchscreen mode which transmits the initial touch
event while further touch data are ignored for a certain amount of time relating to
the typical duration of an on-screen selection task. In this way the user can select
a virtual control by tapping without causing unintended input. But if the user’s
finger is placed on the screen longer than this certain duration, touch status as
well as position data are transmitted to the host enabling continuous touch input.
Based on the feedback of a user testing session I incorporate both touch modes
into the final implementation allowing the user to select the one that suits best
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her/his actual needs.
To avoid unintended input caused by simultaneous use of mouse, touchscreen
and physical controls as mentioned previously, all control data have to be coordi-
nated by the controller’s hardware before sent to the host computer. Therefore,
the Zeus Control must serve as a host for an external computer mouse in order
to align its input with the data of the physical controls and the touchscreen. Then
the user input can be transmitted to the host computer as a matched data stream.

4.1.3 Further user requirements

The user feedback concerning the fields of application and the considered soft-
ware applications shows that the controller is intended to be used for live per-
formances as well as in the studio. For studio use a flexible integration into the
familiar working environment is favorable. Therefore, the controller features a
high-quality, 19-inch touchscreen that can be used as a standard system monitor.
The inclination angle of the device should be adjustable in order to take account
of the user’s position and the lighting conditions. Regarding live performances
all functions should be obvious and easily accessible. The main controls will be
illuminated to ensure a safe handling at dark next to the bright display of the
touchscreen.
The request for a “zoom” functionality of the physical controls’ input behavior will
be incorporated as follows: The user can switch between three modes to set the
relation of physical input and resulting cursor speed.
Using a pen instead of the finger as an alternative input device for fine-grained
editing tasks is enabled by utilizing five-wire resistive touch technology. A detailed
description of the touchscreen can be found in section 5.1.3.
Another application area mentioned in the open discussion with the focus group
was that the controller should serve as a tool for guest musicians and composers
to experiment with the institute’s sound facilities. To keep the training period as
short as possible, the interface should be clearly structured and self-explanatory.
A Quick Start Guide will be directly accessible from the USB flash drive integrated
in the controller which also contains all other relevant files and documents.
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4.2 Defining the technical concept

In the following I will mainly focus on the technical aspects derived from the user
survey. Demands that address the look-and-feel and the user interface will be
covered in chapter 6.

Figure 4.1: Schematic block diagram

By combining the found solutions for the particular user requirements, a functional
representation of the Zeus control can be created which serves as the specifica-
tion for the implementation. Therefore, the overall system is structured into func-
tional blocks. A useful representation referring to the specific needs determined
during the concept phase consists of three units: A main unit, a mouse unit and
a touchscreen unit. The mouse unit has to serve as a host for an external USB
mouse being able to decompose its HID report and send the data to the main unit.
The touch unit has to interpret the user’s input via the touchscreen and generate
absolute position values according to the solution presented in section 4.2.3. The
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absolute position data are sent directly to an internal USB Hub whereas the touch
status is reported to the main unit. The main unit acts as a central processing unit
controlling the user interface and coordinates the input events of physical controls,
touchscreen and external mouse. In this way the main unit is able to generate the
appropriate mouse events for the host computer. Beside that, it outputs relative
position data derived from the input of the physical controls and the connected
mouse. As the touch unit, the main unit is connected to the internal USB Hub in
order to realize a single USB connection to the host computer. The Hub can also
host the USB flash drive used to provide all controller related documents.
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Chapter 5

Implementation phase

5.1 The hardware platform

The choice of an appropriate hardware platform was mainly driven by the ba-
sic technical requirements. In particular, demands that were decided at the very
beginning, like the intended USB functionality, were most significant for the se-
lection. As due to practical reasons the decision had to be made quite early in
the development process, not all potential demands could be predicted in detail.
Therefore, I aimed at choosing a hardware platform that allows for flexibility in
terms of its broad technical specifications. I also tried to consider the concept
of modularity throughout the implementation process in order to react quicker to
new or modified demands. An example showing the reward of the modular ap-
proach is the integration of the touch unit: Even if the opportunity to implement
the touchscreen functionality as a separate HID device appeared quite late in
the development process, it could be easily integrated into the existing hardware
environment.

5.1.1 Atmel AT90USB1287 microcontroller

The main component of the Zeus hardware is the Atmel AT90USB1287 – a 8-bit
RISC microcontroller with in-system programmable flash memory [Atmel, 2009].
However, the most important selection criterion was its integrated, on-chip USB
controller. This allows to realize HID compatible USB devices without the need of
additional hardware for setting up an USB connection. The AT90USB1287 also
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complies with the USB On-The-Go (OTG) specification which enables to imple-
ment applications that operate as a USB host for other devices [USB-IF, 2001b].
In this way, USB devices can communicate directly with each other without a PC
serving as a host. This feature is crucial for the implementation of the mouse unit
which acts as a embedded host for a standard USB mouse.
Beside that, the controller offers the common hardware interfaces USART, SPI
and I2C. As the chip provides 48 programmable I/Os, its is possible to connect
all interface-related components (LEDs, buttons, encoder) directly without further
multiplexing.

5.1.2 Atmel AT90USBKey development board

Figure 5.1: Atmel development board

In order to enable rapid prototyping I choose the Atmel AT90USBKey – a devel-
opment board built around the introduced Atmel controller [Atmel, 2006]. This
enables a quick start benefiting from the on-board peripherals while avoiding the
need for SMD soldering. A main advantage is the regulated 3.3V power supply
supporting input voltages within a range from 8 up to 15V DC. When using the
microcontroller in USB host mode, the AT90USBKEY provides a 5V power supply
for the connected device over the VBUS pin of its USB mini connector. Beside
that, the bootloader execution can be forced via two hardware buttons allowing
to reprogram the chip directly over the USB interface. A problem was the quite
small footprint of the I/Os (1.27mm pitch) with no headers mounted. In order to
use female-to-female jumper cables for prototyping, I extended the board with
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PCB adapters converting the port pins to standard headers (2.54mm pitch).
The entire hardware environment is based on three linked AT90USBKey boards,
one for each functional unit.

5.1.3 Elo1939L touchmonitor

Figure 5.2: ELO open-frame touchmonitor

The used Elo1939L touchmonitor features a 19” TFT display with a maximum res-
olution of 1280 x 1024 (SXGA) combined with 5-wire resistive touch technology.
A 5-wire resistive touch sensor consists of a flexible and a rigid layer separated
by spacer dots. Both layers are coated with a thin, conductive film. If a finger,
or an other object, touches the surface the layers become connected and serve
as a voltage divider. The X-position is determined by applying a voltage gradient
in X-direction across the rigid layer and using the flexible layer to measure the
touch voltage corresponding to the X-position. Accordingly, the Y-position is de-
termined by applying a voltage gradient in Y-direction and using the flexible layer
to measure the touch voltage. The signals are controlled and analyzed by a touch
controller deriving the touch positions.
The main reason choosing a 5-wire resistive touchscreen for the Zeus control was
that it offers a accurate and responsive performance while fulfilling the user re-
quirement of input flexibility (finger, soft-/hard-stylus). Beside that, the integrated
dual Serial/USB controller was very useful during the prototyping process. Us-
ing the screen in USB mode with a modified driver for Windows, I was able to
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simulate most of its later functionality. In this way realistic user testing could be
conducted long before the touch unit was implemented.
In order to transmit the touch data to the touch unit of the Zeus Control, the de-
vice is now used in serial mode. In addition, the touchmonitor has an internal
On Screen Display (OSD) control for picture quality adjustment, which can be ac-
cessed via a mini-DIN 5 connector. The open-frame metal housing allows for a
compact form factor while providing an effective shielding.

5.2 The hardware communication

As the hardware environment evolved into a distributed system with three different
processing units, the communication between the single units becomes a major
issue of the development process.
The most important communication links exist between mouse- and main unit as
well as between touchscreen controller and touch unit. The mouse unit has to
transmit the decoded data of the hosted USB mouse to the main unit while the
data from the touchscreen have to be reported to the touch unit in an appropriate
way. For both connections reliability and real time capability is required.

5.2.1 Serial Peripheral Interface

The connection between the mouse unit and the main unit is realized using Serial
Peripheral Interface (SPI), a synchronous serial bus system originally initiated by
Motorola. However, there is no explicit definition of the software protocol, just
specifications for the hardware interface.
SPI follows a master/slave concept where the transmission is always initiated by
the master device. It also provides the clock and selects the slave via a chip
select line. The data are transmitted in full duplex mode using two signal lines:
Master-Out Slave-In (MOSI) and Master-In Slave-Out (MISO). The word length is
restricted to 8 bit as the SPI hardware is realized by two 8 bit shift registers, each
on every chip.
The SPI communication between the mouse unit and the main unit corresponds
to a single master/slave relation. The mouse unit serves as a master initiating the
transmission as soon as a new mouse input is detected. The main unit serves as
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Figure 5.3: Hardware communication schematic

a slave that has to react to newly received data immediately. Therefore, its SPI
routine is interrupt-driven.
For the transmission of the mouse data I defined a simple protocol consisting of
three consecutive bytes containing the mouse’s current delta values of X,Y and
of the mouse wheel. They describe the displacement relating to the last reported
value. The SPI mouse protocol looks as follows:

[DeltaMouseX][DeltaMouseY][DeltaWheel]

The interrupt-driven slave routine writes the received values into an array. As
soon a new data set is transmitted, it is passed to the main routine.

5.2.2 RS-232

For transmitting the touch data to the touch unit the RS-232 interface of the touch-
monitor’s internal Serial/USB controller is used. Expanding the USART interface
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of the development board with an RS-232 receiver, as described in section 5.4.3,
enables to connect the ELO touchmonitor directly to the touch unit via a DB9
cable. The Universal Synchronous and Asynchronous serial Receiver and Trans-
mitter (USART) is a flexible and very common serial communication bus. As it is
used in asynchronus mode, the data are transmitted using two signal lines: TxD
(“Transmit Data”) and RxD (“Receive Data”).
For the transmission the ELO specific “SmartSet” protocol is used [Elo, 2003].
Each touch data frame consist of ten bytes: A lead-in byte, eight data bytes and
a checksum byte.

[Lead-in byte][eight data bytes][Checksum byte]

Via the “Smart-Set” protocol the internal controller reports touch coordinate pack-
ets to the touch unit. A touch coordinate packet refers to the eight data bytes of
every “Smart-Set” frame and looks as follows:

[’T’][status][X][X][Y][Y][Z][Z]

The ’T’ command indicates a data frame as touch coordinate packet. The status-
byte reports the selected touch mode (Initial Touch, Stream, Untouch). It de-
scribes if touch packet belongs to an initial touch, to a coordinate transmitted
continuously while the touchscreen is being touched (Stream) or to a point where
the finger is lifted. In the following, X and Y position are reported using two con-
secutive bytes each. The Z axis values are set to a default value as no Z data
(pressure) can be obtained using resistive 5-wire technology.
The data are received via an interrupt-driven USART routine which writes the in-
coming data into an array. As soon as a new touch coordinate packet is complete,
it is passed to the main routine of the touch unit.
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5.3 The system software

5.3.1 Development environment

For the software development I use Atmel’s official development environment
“AVR Studio 4” in connection with the free AVR-GCC compiler for C which is
part of the open-source WinAVR suite1. For programming the hardware Atmel’s
In-System Programmer software “Flip” 2 is used allowing to transfer the compiled
hex-files to the microcontroller board directly via USB.

5.3.2 USB HID concept

The main idea of USB HID was to simplify the use of PC input devices while en-
abling opportunities for innovation as new devices require neither custom drivers
nor protocols. The HID concept bases on a extensible, self-describing protocol
allowing a single HID driver to determine the I/O data structure and the function-
ality of a device by parsing its HID descriptor. In this way the driver is able to
communicate with all devices that conform to the USB HID class specification
[USB-IF, 2001a].
Building an USB-compatible HID device requires an hardware driver to manage
the USB communication in combination with a set of USB descriptors accord-
ingly to its intended use. The USB descriptors are data structures describing the
specific properties of the device such as configuration, interface, endpoints, or its
report structure.
Due to the complexity of USB HID firmware development, I implemented the HID
functionality using an existing USB framework – the LUFA library.

5.3.3 LUFA USB library

The Lightweight USB Framework for AVRs (LUFA)3 is an open-source USB library
for USB-enabled Atmel AVR microcontrollers. The library is adapted for the free

1The WinAVR suite including the GNU AVR-GCC compiler can be downloaded
at:http://winavr.sourceforge.net/index.html (accessed 27.12.2010)

2Atmel’s AVR Studio 4 and the In-System Programmer Flip can be downloaded at:
http://www.atmel.com/dyn/products/tools.asp?family id=607 (accessed 27.12.2010)

3The LUFA framework, written by Dean Camera, can be downloaded
at:http://www.fourwalledcubicle.com/LUFA.php (accessed 10.07.2010)
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AVR-GCC compiler of the WinAVR suite. Beside the library source, the framework
contains several applications demonstrating the use of the library. The fact that
the author also uses an Atmel AT90USBKey development board enabled a rapid
entry into USB programming.

5.3.4 Main unit

The Main unit is the central processing system of the Zeus Control. The software
is based on the mouse device application of the LUFA USB library in order to
recognize the unit as a HID USB mouse by the host. It generates a HID-conform
mouse report containing the relative position data and the appropriate mouse
events. The position data are derived from the input of physical controls and the
connected mouse. The mouse events are synthesized by coordinating the in-
put events of physical controls, touchscreen and external mouse according to the
considerations regarding the operating reliability as mentioned in section 4.2.2.
The position data from the Mouse unit are received via an interrupt-driven SPI
slave routine.
Beside that, the main unit is responsible for controlling the user interface and
adopts its output according to the chosen interface settings. It contains all re-
quired I/O drivers for LEDs, buttons and external signals as well as an quadrature
encoder reader/driver to interface the optical encoders of the sliders and the ro-
tary knob. A detailed description of the Main unit’s file structure can be found in
appendix A.1.

5.3.5 Mouse unit

The Mouse unit serves as an USB host to integrate a standard USB mouse into
the Zeus environment. The software is based on the mouse host application of
the LUFA USB library using a HID report parser. The HID parser is necessary
as a basic approach referring to the standard mouse “boot protocol” is not able
to extract the wheel data from the mouse report. Via the parser the HID report
of the connected mouse is decomposed and the extracted X,Y, and wheel values
are transmitted to the Main unit using an SPI master routine. The button status
(left, middle, right) is reported directly via three signal lines. A detailed description
of the Mouse unit’s file structure can be found in appendix A.2.
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5.3.6 Touch unit

The Touch unit implements an USB HID touchscreen driver. The software is
based on the mouse device application of the LUFA USB library. It is modified
in a way, that the Touch unit is recognized as an “absolute-coordinate” device
by the host computer. The HID report includes the received position data of the
touchscreen as well as their general dynamic range. Based on this information
the operating system’s HID driver scales the position data according to the current
screen resolution.
The position data of the touchscreen are received by an interrupt-driven USART
slave routine. Beside the position data, which are directly sent to the internal
USB hub, the touch status (onset, duration) is reported to the Main unit via two
signal lines. A detailed description of the Touch unit’s file structure can be found
in appendix A.3.

5.4 Additional circuits

Even if the use of development boards reduced the need for external circuitry
significantly, several circuits had to be designed to implement the needed, addi-
tonal functionality. In order to ensure a quick and flexible implementation these
are assembled on perfboard providing connections for female-to-female jumper
cables.

5.4.1 Touch sensors

The touch sensors are used to determine if the user touches one of the neoprene
sliders. Therefore, an additional function of the sliders is realized. They become
tactile, easy accessible actuator bars for triggering touch events in the secure
mode. The touch sensitivity is implemented via charge-transfer touch sensors ca-
pable to detect touch through an isolator. The used Quantum Research4 QT113
touch ICs are connected to aluminium plates mounted under the neoprene belts
in their entire length. These serve as sensing electrodes whose capacitance
is continuously measured by the ICs in order to detect relative changes due to

4The Quantum Research Group Ltd. was acquired by the Amtel Corporation in 2008. An
alternative to the used QT113 is the Atmel AT42QT1011 (just available as SOT packages (SMD))
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touch.
The corresponding circuits contain an integration capacitor providing the refer-
ence voltage for the measurement. Beside that, some external wiring is used to
set the sensitivity level to “high” and the maximal on-duration to “infinite” via the
IC’s option pins. The circuits are connected to the 3.3V supply of the Main unit.

5.4.2 Level converter

As the logic level of the Atmel boards is 3.3V, a level shift is needed as the optical
encoders of the rotary knob and the neoprene sliders require a 5V supply. In
order to adapt their 0V/5V quadrature patterns to the board level, 74VHc04 Hex
inverters are used. Having 5V-tolerant inputs they provide the appropriate 3.3V
output levels when powered at 3.3V. The fact that the logic levels are inverted is
irrelevant as the rotation is encoded in the phase relation of the signals. Beside
that, the output signals of the touch circuits, which are active-low, are inverted in
order to use the same input driver for all external signals.

5.4.3 RS-232 Receiver

To receive the touchscreen data via the USART of the Touch unit a MAX3232 IC
is used. It is similar to the common MAX232 but suited for 3.3V systems. The
IC reduces the RS-232 voltage levels (+3V to +15V “high”, -3V to -15V “low”) to
3.3V TTL levels (+3.3V “high”, 0V “low”). The circuit offers a DB9 connector to
directly plug the serial cable of the touchscreen. The external wiring consists of
four charge pump capacitors.

5.4.4 Power supply

The sub-systems of the Zeus control operate at different voltage levels: The
touchscreen requires 12V, the optical encoders 5V and the Atmel boards op-
erate at 3.3V. As all boards offer an on-board voltage regulation they can be
supplied with 12V. The external logic circuits are supplied with 3.3V via the sev-
eral Vcc/GnD pins of the development boards. The voltage supply for the optical
encoders was realized using an 7805 integrated circuit – a linear voltage regu-
lator having 5V output. In order to dissipate the emerging heat the regulator will
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be directly attached to the metal housing. To avoid a short-circuit between the
TO220 package of the regulator and the housing an isolating thermal pad is in-
serted while the used screw is covered with an isolating ring.
For reasons of simplicity, safety and space constraints an external desktop power
supply was chosen as main 12V supply. Since just the LCD touchscreen has a
power consumption of about 50W, the selected supply is able to provide up to
5.5A at 12V.
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Chapter 6

How an idea takes shape - the
design process

6.1 Sketching - Refining the vision on paper

“A sketch is created from current knowledge. Reading, or interpreting
the resulting representation, creates new knowledge.”
Bill Buxton in Sketching User Experiences [Buxton, 2007]

Beside helping me to communicate and share my vision as mentioned in chapter
3.1, the practice of sketching had another important function during the process: I
tried to use sketching as a thinking tool for externalizing my ideas. It is capable to
unveil flaws that were unseen before as well as to reveal new features and possi-
bilities. In this way it helps to refine current ideas and generates new ones. I think
sketching allows a better “conversation” with his own thoughts or – as Gabriela
Goldschmidt puts is – “introduces some kind of dialectic into the design process
that is indeed rather unique” [Goldschmidt, 1991]. Putting ideas down on paper
as a concrete sketch allows a much closer examination, while the representation
can still be provocative and explorative. During the Zeus development several
ideas evolved from sketching: Especially the layout of the interface has been re-
fined several times on paper. But also the idea to use the neoprene sliders as
touch-buttons to trigger a left mouse click in “save-mode” arose from sketching.
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Figure 6.1: Design sketches
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6.2 Prototyping

One of the most challenging aspects of the practical work is that the final imple-
mentation should be a fully functional device which directly evolves from series
of prototypes. Due to the “one-man” development situation of my diploma thesis
it is not possible to implement several different prototypes in hardware as it may
be done in a company. Therefore, I apply the strategy of evolutionary prototyp-
ing 1 where the initial prototype is developed, evaluated and refined continuously
into the final system. I aimed at a successive implementation of functional sub-
systems without restricting the overall system to early. This enables to incorporate
the user feedback into the next revision of the prototype. The intention is to bal-
ance between the prototype as basis for constructive feedback and its progress
towards becoming a fully functional device.
Throughout the design process the prototype has gone through several stages
having different objectives. In the following, I outline the most important stages.

6.2.1 The initial prototyping environment

Figure 6.2: The initial prototyping environment

As a starting point for the practical development served a basic hardware environ-
ment (fig. 6.2) consisting of one ATMEL board, an optical encoder, an endless-

1Even if this term is more common in the area of software development, it provides an accurate
description for the chosen prototyping approach
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belt controller and several buttons and LEDs assembled on perfboard. The pri-
mary objective of this setup was to get used to the hardware platform, the pro-
gramming environment as well as the USB library. Beside that, essential functions
of the firmware have been implemented or adapted: Generic drivers for external
buttons and LEDs as well as for the quadrature encoders have been integrated
and tested. In this way technical foundations have been laid while facilitating the
further development as the basic I/O functionality could be implemented in the
following by adapting the generic drivers.

6.2.2 The first prototype

Figure 6.3: The first prototype

The first environment arranged as a real prototype (fig. 6.3) featured an interim
user interface providing a rotary encoder as well as buttons and status LEDs
for direction and cursor speed. This could be placed freely to both sides of the
touchscreen. Via the LUFA library the basic USB HID functionality has been im-
plemented: The ATMEL board, which should become the Main unit of the later
system, was able to “mimic” a HID mouse and send the decoded rotation data as
relative mouse movements to the host.
In this way, a first hands-on experience became possible while the touchscreen
was operated by a modified Windows driver, realizing the intended functionality
on operating system level. This basic functional setup provided a first fundamen-
tal clue concerning the user interface: It became clear that if a mouse should be
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integrated into the controller’s work flow as intended, it is beneficial if the physical
controls and the mouse do not need to be operated by the same hand. From the
perspective of a right hander, the work flow is more efficient if the right hand is
able to switch between touchscreen and mouse while the left one operates the
physical controls. This allows the user to combine the physical controls with either
touchscreen or mouse in a pleasant way.
As a consequence the user interface has been placed to the left side of the touch-
screen inducing the first major modification of the current conceptual representa-
tion (fig. 3.1, p.19).

6.2.3 The user testing environment

Figure 6.4: The user testing environment

In the next revision of the prototype the second ATMEL unit has been integrated
into the system providing USB mouse host functionality to incorporate mouse
data into the Zeus environment. From the user’s perspective, the major nov-
elty has been the introduction of neoprene sliders running along two sides of the
screen. The motivation for the development of these specific physical controls is
described in the following section. As now all relevant components of the user
interface were available, a prototype setup could be arranged suitable for com-
prehensive user testing. In order to provide a flexible test environment, the rotary
knob and the sliders were not attached to the screen enabling different arrange-
ments. The related user test is described in section 6.4.
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6.2.4 The first plug & play version

Figure 6.5: The first plug & play version with slate PC running Linux

While during the user testing the touchscreen still was controlled by a modified
driver application for Windows, the prototype shown in figure 6.5 was able to be
used without a specific OS driver. As the focus of this revision was entirely put on
the technical aspects, the user interface has not yet been adapted to the findings
of the testing session. However, from the technical point of view this version was
a major step forward. Due to the integration of the third ATMEL board into the
system implemented as an absolute-coordinate HID transmitting the touchscreen
data, the controller became a true plug & play, cross-platform compatible device.

6.2.5 The alpha prototype

The last revision that is presented within this work is the alpha prototype: It is
a fully functional version that has been refined according to the user feedback
concerning functionality and lock & feel. The final user interface is implemented
by reference to the findings as described in section 6.5. Beside that, all electri-
cal components are grouped and installed on aluminum profiles mounted around
the display. As a result, the alpha prototype is a ready-to-use, open-frame imple-
mentation of the Zeus Control taking into account the results of the entire design
process. Remaining tasks are the design of an appropriate metal enclosure as
well as the fine-tuning of the control settings in collaboration with the users.
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Figure 6.6: The alpha prototype
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6.3 Case study: The neoprene sliders

The development of the neoprene sliders is intended to serve as a representative
example of how a certain idea can evolve throughout the design process.
The basic idea was to provide an input device that combines a relative control
behavior with the operating feel of a fader – an input device used for precision
demanding musical tasks since almost the beginnings of music technology.
Looking at the first conceptual sketch, it becomes obvious that the initial vision of
the controller was significantly influenced by the most common fader application
– a mixing desk. The physical controls resemble the “classical” arrangement of a
mixing desk’s channel strip. At this point it seemed to be a self-evident and logic
layout.
Intending to implement the controller’s user interface in such or a similar way, I
searched for a commercial endless-belt controller. Surprisingly, there was just
one implementation available on the market: The Penny+Giles PGF7000. As this
company has a very good reputation in the field of audio technology as a man-
ufacturer of high-quality faders for mixing desks, I was looking forward to use it
for the controller. Unfortunately, the product did not match my expectations: The

Figure 6.7: Penny+Giles PGF7000 Digital Belt Controller

belt was made of stiff plastic instead of a soft, rubber-like material I expected on
account of the product images. This results in an unpleasant tactile feel when
handling the belt, intensified by its non-uniform friction and noisy operation.
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Even if the controller provides important clues like resistance and guidance – both
basic requirements for precise, spatial control tasks [MacLean, 2008] – these are
significantly diminished by its unpleasant tactile and operational characteristics.
As one of the main reasons for using physical controls was to bridge the touch
screen’s lack of tactile feedback, I was not willing to accept these shortcomings
in terms of haptics.
Therefore I decided to develop an endless-belt controller by myself with the aim
to enhance the haptic characteristics in comparison with the purchasable imple-
mentation. Since the belt properties seemed to be the key element regarding the
haptic properties of such a control, the selection of its material was an impor-
tant aspect: After testing several different synthetic rubber materials, I found that
neoprene is very well suited for realizing the belt: The material itself provides a
strong affordance2 to touch it. Due to its soft and responsive surface, it provides
a pleasantly tactile counterpart to the rigid display of touchscreen. Beside that,
its “stickiness” enables precise, fine-grained control movements while supporting
the spatial guidance of the control. The user feels in control.

Figure 6.8: Neoprene belt prototypes

The belts are made out of two neoprene fabric strips sticked together using a spe-
cial adhesive. The sides are hemmed with a nylon band reinforcing the neoprene
belts while reducing their stretchability. This was necessary to reduce slippage
between the guidance pulleys and the belt. The guidance pulleys are made out

2The term affordance refers to the physical characteristics of an object: If the affordance of an
object corresponds to its intended function, efficiency and ease of use can be increased signifi-
cantly. The term “affordance” was originally coined by the perceptual psychologist J. J. Gibson in
1977. It was introduced to the field of design by Donald Norman in his seminal book “The Psy-
chology of Everyday Things” in 1988 (Reprint: “The Design of Everyday Things”[Norman, 2002])
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Figure 6.9: Final belt version with pulleys

of solid plastic turned on a lathe. To increase the friction between pulleys and
the slick bottom side of the belt (jersey-fabric laminated), they are covered with
an outer neoprene coating. Between the pulleys, the belt is running on a satined
aluminum track serving also as an electrode for the touch sensor ICs. To ensure
an appropriate input resolution, high-quality optical encoders were used provid-
ing 64 pulses per revolution. In contrast to the commercial solution, which size

Figure 6.10: Optical encoder attached to pulley

corresponds to a conventional audio fader (100mm fader-length), the custom belt
controller has been increased in size (220mm length) according to its function as
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assignable “master” control: Due to the long fader path at high resolution, very
precise control tasks can be performed. The decision to integrate two endless-
belt controller along the edges of the screen, will be addressed in section 6.5
relating to the user interface.

Figure 6.11: Finished endless-belt control
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6.4 In dialog with the user: Feedback & Testing

Figure 6.12: User testing

Based on the user testing environment shown in section 6.2, I conducted a feed-
back session to clarify important functional and ergonomic aspects with regard to
the final revision. It was carried out as a qualitative, “hands-on” feedback session
with users corresponding to the controller’s fields of application being computer
music/electronic composition, live electronics and the studio. The user testing en-
vironment was set up in the institute’s production studio in order to control relevant
software applications (Samplitude, Max/Msp, Pure Data). I prepared a checklist
containing aspects I aimed to ascertain within this user session. One of the most
important goals was to determine the specific layout of the user interface through
hands-on experience. Moreover, setting options, (e.g. cursor speed/direction)
and additional technical features (pedal, casing) were to be defined. The cor-
respondent feedback was gained by observing and interviewing the users while
handling the controller. Beside that, the session evolved into a intensive discus-
sion providing constructive feedback. The most important findings being essential
for the final revision of the system will be covered in section 6.6.
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6.5 Case study: The knob

Similar to the endless-belt controller, the knob was developed in an iterative, ex-
perimental process. Driven by the question how to design the shape of a knob
in order to afford its usage, i created several prototypes. Throughout the itera-
tions, it became apparent that I prefer a bell-shaped form which is adapted to the
grip positions of thumb and forefinger. Even if the knob was designed entirely
according to my personal conception, several people favored its design when us-
ing it during informal tests. In order to “compete” with the tactile affordance of

Figure 6.13: The knob prototypes

the endless belt controls, the knob was turned on a lathe out of solid rubber. A
lathe-turned aluminum rod was inserted as a shaft. The knob is attached on an
illuminated plastic cylinder which is connected to the axis of the rotary encoder.

Figure 6.14: Assembled rotary encoder module
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6.6 Refining the user interface

The final revision of the user interface was driven by findings of the feedback ses-
sion while applying several design principles.
Since the first conceptual sketch, where the arrangement of the controls resem-
bled a mixing desk’s channel strip (fig. 3.1, p.19), the interface layout has been
fundamentally changed: Beside relocating the controls to the left side as rea-
soned in section 6.2, a second endless-belt control has been added alongside
the lower edge of the touchscreen. This ensures that the slider positions corre-
spond directly to their function: Considering a touchscreen as a two-dimensional
field, the control behavior of each endless belts is mapped to X and Y axis, re-
spectively. In this way a good mapping 3 can be achieved as the controllers’ effect
is consistent with its spatial properties according to natural expectation.
As a rotary knob has no defined direction property, a natural ’spatial’ mapping can
not be used to indicate the direction of its control data. As a direction assignment
is necessary anyway, the rotary knob enables to choose control in X,Y and diago-
nal direction. To support the user handling this unavoidable one-control-multiple-
effect relationship, the active direction is indicated using LED arrows providing a
strongly visual, direction-dependent clue.
In the feedback session, the general need for the rotary encoder when hav-
ing X and Y belt controllers and the mentioned multiple-effect relationship was
questioned and discussed: The users agreed to keep the rotary knob as well
as its multiple-direction functionality indicated by LED arrows providing a visual,
direction-dependent clue. The default direction of the rotary knob’s control move-
ment is diagonal as this is appropriate for most virtual controls: In this way, a
virtual knob or vertical slider - reacting on y-movements - can be controlled just
as a horizontal slider reacting on x-movements.
Also in terms of the knob’s position, the users were in agreement: Trying out
different layouts, the intersection point between the two endless-belt controls ap-
peared as the most suitable position for the rotary knob. In the following – due
to terms of better handling – the need to lower the knob a bit in relation to the
control panel has been identified.

3The seminal publication on mapping is Donald Norman’s book “The Design of Everyday
Things” [Norman, 2002]. It also covers the principles of feedback and visibility being addressed
in the following.
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Another important issue of the user interface is providing appropriate feedback
about the user’s action and the current system status. Concerning this, the most
crucial information is the current mouse-event state. As mouse-events can be
triggered by touchscreen interaction as well as via the physical controls, visual-
izing the current state contributes to the user’s mental model of how the system
works and her/his feeling of being in control. Therefore the mouse-state is clearly
indicated by a red LED field in the left upper corner. In the testing session, the
users evaluated this visual feedback as very helpful being apparent without being
distractive.
Beside the LED field, the different touch modes can be selected via illuminated
buttons visualizing the current state of the device (green = “save-mode”, red =
“stream-mode” [continuous input]). The touch mode buttons were placed clearly
visible next to the LED field. In order to avoid that the user covers up some part
of the screen while accessing them (screen coverage), they are shifted to the left
side.

Figure 6.15: The revised user interface
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Chapter 7

Conclusion

7.1 Prospects

The scope of this work covers the development of the Zeus Control from the initial
idea up to the alpha prototype – being a ready-to-use, open-frame implementation
taking into account the results of the entire design process. In order to make the
controller ready for use at the IEM, the alpha prototype has to be assembled into
an appropriate casing. It is intended to built a custom aluminum enclosure with a
combined support/carry handle allowing an adjustable inclination.

Figure 7.1: Enclosure concept
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A final step will be to establish the controller as a new alternative for sound control
within the institute: In a close cooperation with the system’s future users control
settings like the touch modes or the physical controls’ behavior will be adapted to
their intended field of application.
Beside that, the on-board documentation on the controller’s internal flash drive,
which contains all the technical documents relating to the device, will be extended
with a Quick Start Guide for novice users.
The way it looks right now, the first application using the Zeus Control will be a
newly designed graphical user-interface for the CUBEmixer software1 at the IEM
CUBE2 being customized to the controller’s properties.

7.2 Final remark

Looking at the first sketch being a simple outline of the basic idea and the final
prototype vividly illustrates how a vision can evolve in such a process.
It was rewarding to experience what a creative potential can be released sharing
one’s ideas with others while taking their feedback seriously. Especially as the
apparent constraints, which resulted from the real users’ demands, became the
main actuators for creativity.
Also the impact of using methods in order to continuously refine one’s conceptions
was quite remarkable to experience.
In conclusion, generating new ideas and finding solutions for problems – some
even dismissed as unfeasible before – within an overall process driven by existing
and newly gained knowledge, constructive feedback and applied methodology
was a very challenging and exiting overall experience.
I hope that the final result contributes to the available music technology at the IEM
with regard to intuitive sound control.

1The CUBEmixer software is a open-source, real-time multipurpose mixing and mastering tool
for multichannel loudspeaker systems written in PureData.
Project page: http://ambisonics.iem.at/xchange/products/cubemixer

2The CUBE is a medium-sized concert hall at the IEM enabling the reproduction of ambisonic
soundfields of at least 3rd order.
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Appendix A

Software reference

A.1 Main unit

Source files

• mouse.c
This file is the primary source file of the Zeus main unit. Its USB functionality
is based on the mouse device application of the LUFA USB library. In the
CreateMouseReport function all input data (physical controls, touchscreen,
external mouse) are combined into an appropriate mouse report according
to the chosen settings. Beside that, the file contains a SPI slave routine in
order to receive the data of Mouse unit.

• Descriptors.c
This file contains the USB Device Descriptors of a HID USB mouse and
belongs the LUFA library. The descriptors are parsed by the host to deter-
mine the specific characteristics and functionality of the device. As a scroll
wheel is not part of the standard “boot mouse protocol”, the HID descriptor
is modified in order to transmit the mouse wheel data.

• encoder.c
A quadrature encoder reader/driver written by Pascal Stang in order to inter-
face quadrature encoders with the Atmel AVR-series microcontrollers. The
library was adapted to the used AT90USB1287 processor via the encoder-
conf.h file.
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Header files

• zeus defs.h
Global defines and macros for the Main unit of the Zeus control

• avrlibdefs.h
Global defines and macros for AVR applications written by Pascal Stang

• Descriptors.h
Header file for Descriptors.c

• encoder.h
Header file for encoder.c

• encoderconf.h
Configuration file for the quadrature encoder driver. As the encoder library
uses external interrupts the defines have to be adapted according to the
hardware interrupt lines of the used processor.

• EXTmouse button.h
Specific button driver for detecting the different mouse button states of the
connected mouse on Port B (Pin 4,5,6).

• Mouse.h
Header file for mouse.c

• zeus Buttons.h
Specific button driver for the Zeus Control. The driver is designed to inter-
face buttons wired in an external pull-down circuit on Port C.

• zeus Inputs.h
Specific driver for detecting external signals on Port F ( touch state signal of
touchscreen, touch sensor signals of encoder and sliders, pedal input).

• zeus LEDs.h
Specific LED driver for the Zeus Control for LEDs connected to Port A.
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A.2 Mouse unit

Source files

• MouseHostWithParser.c
This file is the primary source file of the Zeus mouse host unit. Its USB
host functionality is based on the mouse host application of the LUFA USB
library using a parser to decompose the HID report descriptor report of a
connected USB mouse. This approach is necessary as the scroll wheel
is not part of the basic, fixed-length report of the standard “mouse boot
protocol” supporting just X/Y movement and three buttons. Therefore the
LUFA parser was used to identify the features of the connected mouse and
how they are represented in the report. This allowed to access the mouse
wheel data in order to transmit them to the Main unit.
The file contains also the SPI master routine to send the extracted values of
the movement in X and X direction as well as the mouse wheel input to the
Zeus main unit.

• HIDReport.c
This file processes the HID report descriptor from the attached mouse via
the HID parser routines of the LUFA library in order to readout the mouse
data.

• ConfigDescriptor.c
This LUFA file reads in the configuration descriptor and setups the host
pipes in order to communicate with the attached USB device correctly .

Header files

• ButtonStatus.h
A specific output driver for the mouse host unit. The driver sets the pins 4
to 6 on Port B according to the button status of the connected mouse (left,
middle, right).

• MouseHostWithParser.h
Header file of MouseHostWithParser.c
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• HIDReport.h
Header file of HIDReport.c

• ConfigDescriptor.h
Header file of ConfigDescriptor.c

A.3 Touch unit

Source files

• Mouse.c
This file is the main source file of the touch unit. It uses the mouse de-
vice application of the LUFA library to implement an USB HID hardware
touchscreen driver. The main modifications are made in the device descrip-
tor Descriptor.c. As a result, the touch unit is recognized as an “absolute-
coordinate” HID device by the operating system. The file contains also an
interrupt-driven USART routine to receive the touchscreen data sent via RS-
232.

• Descriptor.c
The file contains the modified mouse report descriptor in order to imple-
ment the USB touchscreen functionality. The main changes in contrast to a
mouse report descriptor are:

– X and Y are reported as 16bit values instead of 8-bit (mouse)

– X and Y are reported as absolute values instead of relative ones

– Beside the logical min/max values, also the physical min/max values
have to be reported

Header files

• touch status.h
This file is a specific port driver for the touch unit of the Zeus control. The
driver sets the pins 2 and 3 on Port F according to the touch status. Pin 2
indicates the onset of a touch event while pin 3 indicates its duration.
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• Descriptors.h
Header file of Descriptor.c

• Mouse.h
Header file of Mouse.c
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Appendix B

Pre-calibration of the touch
controller

The internal controller of the touchscreen has been configured in order to report
the finger’s X and Y position as 10 bit values to the touch unit. This configuration
has been made manually using the SMARTSET program - a small utility program
by the ELO company able to communicate with the touch controller via the touch-
screen’s RS-232 interface.
Within the Scaling submenu the X Low and X High values as well as the Y Low
and Y High values have been adapted in such a way that the reported screen
coordinates range from 0 to 1024. This can be checked using the Touch testing
submenu showing the data transmitted by the controller. In the following the scal-
ing has to be enabled in the Touch Mode submenu. Actually, this pre-calibration
should be a one-time task as the scaling has been saved to the nonvolatile RAM
of the touch screen controller via the Load/Save Setup. Just if – for whatever
reasons – this saved pre-calibration data become incorrect or deleted, a new
configuration of the touch controller is necessary.
Even if it would be possible to directly communicate with the controller via ASCII
commands, using the SMARTSET program for the described calibration task
is much easier. For a re-calibration the touchscreen’s RS-232 output – nor-
mally connected to the Zeus Control’s touch unit – has just to be connected to a
computer running SMARTSET. Unfortunately, SMARTSET application is a DOS-
based program, that is – on my inquiry – not currently planned to be updated.
The SMARTSET program as well as the SmartSet Technical Reference Manual
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can be found on the Zeus Control’s internal USB flash drive.
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