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Zusammenfassung
Das Feld der blinden Quellenseparation (BSS) befasst sich damit, aus Signa-

len, die als Superposition von mehreren unabhängigen Quellensignalen aufzufassen
sind, die ursprünglichen Quellensignale wiederherzustellen. Entscheidend ist, dass
dafür lediglich die gemischten Signale zur Verfügung stehen und weder die statisti-
schen Eigenschaften der ursprünglichen Quellensignale noch Einzelheiten über den
Überlagerungsprozess bekannt sind.

Die Anwendungsgebiete der BSS umfassen neben Aufgaben im Bereich der Bio-
medizin, Bildanalyse und der Telekommunikation (blinde Kanalentzerrung) auch
die Trennung von akustischen Signalen.

In dieser Diplomarbeit werden zunächst die für die BSS nötigen informations-
theoretischen Konzepte, statistischen Schätzmethoden und Verfahren der nichtli-
nearen Optimierung behandelt. Darauf aufbauend wird als mächtiges Werkzeug
zur blinden Quellenseparation das statistische Modell der Analyse unabhängiger
Komponenten (ICA) vorgestellt, welches unter der Voraussetzung der statistischen
Unabhängigkeit der Quellensignale eine Lösung des BSS-Problems ermöglicht.
Ausgehend von unterschiedlichsten Ansätzen (Maximierung der Entfernung von
der Gauss-Verteilung, Maximum-Likelihood-Schätzung, Minimierung der gemein-
samen Information, Diagonalisierung des Kumulantentensors) werden diverse, prak-
tisch anwendbare Algorithmen zur adaptiven Schätzung des ICA-Modells theore-
tisch aufgearbeitet und vergleichend gegenübergestellt.

Abstract
The purpose of Blind Source Separation (BSS) is to recover a set of latent

independent source signals from observable signals that are generated in a mixing
process as superpositions of these very source signals. For this task, only the
mixtures are available, whereas both the statistical properties of the original source
signals and the details of the mixing process are unknown.

The field of application of BSS includes not only tasks in the area of biomedical
sciences, computer vision, and telecommunications (blind channel equalization),
but also the separation of acoustic signals.

This diploma thesis starts with discussing the information-theoretic concepts,
the methods for parameter estimation, and some issues from nonlinear optimiza-
tion theory that are needed in BSS. In this context, the statistical model of Inde-
pendent Component Analysis (ICA) is introduced as a powerful tool for performing
BSS, relying solely on the statistical independence of the source signals. Based
on several different approaches (maximization of non-Gaussianity, maximum like-
lihood estimation, minimization of mutual information, diagonalization of the cu-
mulant tensor), various implementable algorithms for adaptively estimating the
ICA model are derived, compared and contrasted.
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1 Probability Theory

Since it is beyond the scope of this thesis to provide an in-depth discussion of

probability theory, the basic concepts from this field are assumed to be known.

However, we want to quickly review general notions regarding multidimensional

random variables and to establish their notations. To this end, define a random

vector x as a vector

x =
[

x1 · · · xN

]T

(1.1)

whose components xi are continuous-valued random variables themselves (Pa-

poulis, 1991). Note that throughout this thesis, vectors and matrices are always

denoted in boldface lowercase and uppercase symbols, respectively, be they random

or deterministic.

1.1 Probability Density Functions

1.1.1 Joint Probability Density Function

For a random vector as in Eq. (1.1), we denote its joint (or, multivariate) probability

density function (abbreviated p. d. f.) by (Papoulis, 1991)

px(x) = px(x1, . . . , xN ). (1.2)

For notational convenience, the subscript of the p. d. f. is often dropped. In general,

no ambiguities should arise from that.

1.1.2 Marginal Density Function

Integrating the joint probability density function of a random vector x over one

or more of the random variables yields the joint p. d. f. of the remaining random

variables (Papoulis, 1991). In particular, by integrating over all random variables

except one, e. g. xi, we get the marginal p. d. f. of that single random variable

2



1.1 Probability Density Functions

pxi
(xi) (Papoulis, 1991):

pxi
(xi) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
p(x1, . . . , xi−1, xi+1, . . . , xN)dx1 · · · dxi−1dxi+1 · · · dxN .

(1.3)

1.1.3 Probability Density Function of a Transformation

Let us suppose that a random vector y =
[

y1 · · · yN

]T

is obtained from another

random vector x =
[

x1 · · · xN

]T

through a transformation described by N

functions

g1(x), . . . , gN(x) (1.4)

as follows:

y1 = g1(x), . . . , yN = gN(x). (1.5)

Then, the p. d. f. py(y) of the transformed random vector can be found by solving

the system







g1(x) = y1

...

gN(x) = yN

(1.6a)

or, with the functions gi(x) compiled into the vector function g(x),

g(x) = y (1.6b)

for a specific set of numbers y1, . . . , yN (Papoulis, 1991). This yields

py(y) =
∑

j

px(xj)

|det Jg(xj)|
, (1.7)

where the summation is carried out over the set of solutions of the system in

Eqs. (1.6), denoted xj, and Jg(xj) is the Jacobian matrix of the vector function

g(x), evaluated at the solution xj. The Jacobian matrix Jg(x) of a vector function

3



1 Probability Theory

g(x) =
[

g1(x) · · · gN(x)
]T

is given by

Jg(x) =
∂g(x)

∂x
=







∂g1(x)
∂x1

· · · ∂g1(x)
∂xN

...
. . .

...
∂gN (x)

∂x1
· · · ∂gN (x)

∂xN






. (1.8)

Note that in Eq. (1.7), one term is added for every solution of the system in

Eqs. (1.6), and the p. d. f. of y is zero if there does not exist any.

Example 1.1 (Probability Density Function of a Transformation)

In this example, we consider the one-to-one mapping

y = g(x) =
ln (3 − 2 |x|)

ln 3
, −1 ≤ x ≤ 1.

As one can easily verify, this equation possesses the two solutions

x1 = g−1(y) = +
3 − 3y

2
, 0 ≤ y < 1, 0 < x1 ≤ 1

and

x2 = g−1(y) = −3 − 3y

2
, 0 ≤ y < 1, −1 ≤ x2 < 0.

In this case, the Jacobian matrix consists of only a single entry Jg(x), for which

we get

Jg(x) =
dy

dx
=

dg(x)

dx
=

1

ln 3
· 2 sign (x)

2 |x| − 3
, x 6= 0.

From Eq. (1.7), we can derive the p. d. f. py(y) of the random variable y as a

function of the random variable x:

py(y) =
px(x)

|Jg(x)|

∣
∣
∣
∣
∣
x=+ 3−3y

2

+
px(x)

|Jg(x)|

∣
∣
∣
∣
∣
x=− 3−3y

2

, 0 ≤ y < 1

=
ln 3

2
· 3y

[

px

(
3 − 3y

2

)

+ px

(

−3 − 3y

2

)]

, 0 ≤ y < 1.

If x is distributed symmetrically, this expression can be simplified to

py(y) = 3y ln 3 px

(
3 − 3y

2

)

, 0 ≤ y < 1.
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1.1 Probability Density Functions

1−1

1

x0

y = g(x)

1−1

0.5

x0

px(x)

1
−

1

1

y
0

p
y
(y

)

Figure 1.1: The p. d. f. of the uniformly distributed random variable x is trans-
formed by the function y = g(x) to yield a new random variable y.

Fig. 1.1 illustrates how the p. d. f. of a uniformly distributed random variable x

is transformed by the function from this example. “

Example 1.2 (Probability Density Function of a Linear Transformation)

Consider next the linear transformation of a random vector x as described by







y1

...

yN







=







a11 · · · a1N

...
. . .

...

aN1 · · · aNN






·







x1

...

xN







y = Ax.

If the transformation matrix A is invertible, solving this system for x gives the

unique solution

x = A−1y.

The Jacobian matrix Jg(x) of the transformation is exactly the transformation

matrix A itself:

Jg(x) = Jg = A.

Note that in this case, the Jacobian matrix J g(x) is constant, i. e. it is not a

5



1 Probability Theory

function of the random variables. Therefore, Eq. (1.7) yields

py(y) =
px(A

−1y)

|det A| (1.9)

for the p. d. f. of the output of the transformation. “

1.2 Expected Value

The expected value of g(x1, . . . , xN ), also called the mean or the mathematical

expectation of g(x1, . . . , xN), is defined by the integral (Papoulis, 1991, Hyvärinen

et al., 2001):

E{g(x)} =

∫ ∞

−∞
px(x)g(x)dx (1.10a)

E{g(x)} =

∫ ∞

−∞
· · ·
∫ ∞

−∞
px(x1, . . . , xN)g(x1, . . . , xN)dx1 · · · dxN . (1.10b)

Here, g(x) denotes any scalar, vector, or matrix derived from the random vector

x, we have to perform the integration separately for each entry, and the expected

value E{g(x)} is exactly the same size as g(x).

From the definition in Eqs. (1.10), we can easily deduce the linearity of the

expectation operator (Papoulis, 1991) as formalized by

E
{

N∑

k=1

akgk(x)

}

=
N∑

k=1

akE{gk(x)} (1.11a)

E{a1g1(x) + · · · + aNgN(x)} = a1E{g1(x)} + · · · + aNE{gN(x)} , (1.11b)

where the coefficients ak are constant, i. e. nonrandom. However, in general (cf.

Section 1.3.1) there is no such relation for the expectation of products of random

variables (Papoulis, 1991):

E
{

N∏

k=1

akgk(x)

}

6=
N∏

k=1

akE{gk(x)} . (1.12)

A useful application of the linearity of the expected value can be found in linear

algebra. More specifically, for constant matrices A and B of suitable sizes, it holds

that (Hyvärinen et al., 2001)

E{Ax} = AE{x} , E
{
xTB

}
= E

{
xT
}

B. (1.13)

6



1.3 Dependence between Random Variables

1.2.1 Mean Vector

The expected value of x is called the mean vector of x and denoted by ηx (Hyväri-

nen et al., 2001).

1.2.2 Estimating Expected Values from Data Samples

According to Hyvärinen et al. (2001), a straightforward estimator of the expected

value in Eq. (1.10) from K samples x[k], k = 1, . . . , K of the random vector x is

given by the formula

E{g(x)} ≈ 1

K

K∑

k=1

g(x[k]). (1.14)

Applications of Eq. (1.14) include the estimation of the mean vector, the correla-

tion matrix, and the covariance matrix of random vectors.

1.3 Dependence between Random Variables

1.3.1 Covariance, Variance and Correlation

The covariance Cij of two random variables xi and xj is defined as (Papoulis,

1991)

Cij = E
{(
xi − ηxi

) (
xj − ηxj

)}
= E{xixj} − E{xi} E{xj} , (1.15)

where ηxi
denotes the expected value of the random variable xi.

The covariance evaluated at two identical indices is called variance σ2
xi

of the

random variable xi (Papoulis, 1991)

σ2
xi

= E
{
x2

i

}
− E

{
xi

}2
. (1.16)

Likewise, the correlation Rij between two random variables xi and xj is defined

as (Papoulis, 1991)

Rij = E{xixj} . (1.17)

The random variables x1, . . . , xN are called (mutually) uncorrelated if their co-

variances Cij = 0 for every pair of different indices i 6= j (Papoulis, 1991). Then,

7



1 Probability Theory

from Eq. (1.15) it follows that

E{xixj} = E{xi} E{xj} , i 6= j (1.18)

for (mutually) uncorrelated random variables.

1.3.1.1 Covariance Matrix

Let Cx denote the covariance matrix of the random vector x =
[

x1 · · · xN

]T

defined as

Cx =







C11 · · · C1N

...
. . .

...

CN1 · · · CNN






, (1.19)

where Cij is the covariance of xi and xj as defined by Eq. (1.15).

1.3.1.2 Correlation Matrix

Similarly, the correlation matrix Rx of the random vector x =
[

x1 · · · xN

]T

is

defined as the matrix

Rx =







R11 · · · R1N

...
. . .

...

RN1 · · · RNN






, (1.20a)

where Rij is the correlation of xi and xj as defined by Eq. (1.17). Obviously, the

correlation matrix Rx can also be obtained as the expected value of the outer

product of the random vector x with itself

Rx = E
{
xxT

}
. (1.20b)

Note that both the correlation matrix and the covariance matrix are symmetric

matrices, i. e.

Rx = RT
x , (1.21a)

and likewise for the covariance matrix

Cx = CT
x . (1.21b)

8



1.3 Dependence between Random Variables

From the definitions of covariance and correlation as given in Eq. (1.15) and

Eq. (1.17), respectively, we can easily deduce the following connection between

the covariance matrix Cx and the correlation matrix Rx

Cx = Rx − ηxη
T
x , (1.22)

where ηx is the mean vector corresponding to the random vector x as defined in

Section 1.2.1.

It is apparent from Eq. (1.22) that for zero-mean random vectors

ηx = 0 (1.23)

the correlation matrix Rx equals the covariance matrix Cx. Since in this thesis all

random variables are zero-mean unless stated otherwise, the following discussion

applies to both the correlation matrix and the covariance matrix.

As mentioned in Hyvärinen et al. (2001), all eigenvalues of the correlation matrix

Rx are real and nonnegative. Moreover, it is always possible to find a set of

mutually orthonormal real eigenvectors corresponding to the correlation matrix

Rx.

1.3.2 Statistical Independence

When the random variables x1, . . . , xN are mutually statistically independent, it

holds that (Papoulis, 1991)

px(x1, . . . , xN) = px1(x1) · · · pxN
(xN). (1.24)

In other words, in the case of statistical independence, the joint p. d. f. px can be

factorized into the product of marginal densities pxi
.

According to Papoulis (1991), it can be shown that for statistically independent

random variables xi, the random variables

y1 = g1(x1), . . . , yN = gN(xN) (1.25)

are statistically independent, too.

If the random variables x1, . . . , xN are mutually statistically independent and

have the same probability density function, the random variables are referred to

as i. i. d. (independent, identically distributed).

Especially in the context of Independent Component Analysis (cf. Section 5.3), it

9
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is crucial not to confuse uncorrelatedness with statistical independence. More pre-

cisely, statistical independence is a much stronger concept than uncorrelatedness,

in the sense that statistical independence implies uncorrelatedness, but not vice

versa.1 Therefore, two random variables can be uncorrelated, yet not statistically

independent, whereas every pair of statistically independent random variables is

also uncorrelated.

Combining these notions with Eqs. (1.25) and (1.24), we conclude that for sta-

tistically independent random variables x1, . . . , xN the following equation holds

true (Papoulis, 1991)

E{g1(x1) · · · gN(xN)} = E{g1(x1)} · · · E{gN(xN)} , (1.26)

where, obviously, all expectations must exist (Hyvärinen et al., 2001).

1.3.3 Group Independence

A group Gx of random variables x =
[

x1 · · · xN

]T

is statistically independent

of the group Gy of random variables y =
[

y1 · · · yM

]T

if (Papoulis, 1991)

p(x1, . . . , xN , y1, . . . , yM) = p(x1, . . . , xN)p(y1, . . . , yM). (1.27)

From Eq. (1.27) it can be derived that any subset of random variables out of Gx
is statistically independent of any subset of random variables out of the group Gy.
Particularly, statistical independence holds for any pair of xi and xj (Papoulis,

1991).

On the other hand, nothing is said about statistical dependence among the

random variables inside the groups Gx or Gy, respectively: xi may or may not be

statistically independent of the other random variables inside the group Gx, and

similarly for yj inside its group Gy.

1.4 Central Limit Theorem

Consider N statistically independent random variables x1, . . . , xN of continuous

type and a random variable x constituted by their sum

x = x1 + · · · + xN . (1.28)

1For an important exception where uncorrelatedness does imply statistical independence see
Section 1.6.
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1.5 Higher-Order Statistics

The mean ηx and the variance σ2
x of the random variable x are given, respectively,

by

ηx = ηx1 + · · · + ηxN
, σ2

x = σ2
x1

+ · · · + σ2
xN
. (1.29)

The central limit theorem (Papoulis, 1991) states now that the p. d. f. px(x) of

the random variable x approaches a Gauss p. d. f. with mean ηx and variance σx:

px(x) ≈
1

√

2πσ2
x

exp

[

−1

2

(x− ηx)
2

σ2
x

]

. (1.30)

The p. d. f. pz(z) of a standardized random variable z (Kreyszig, 1999) related to

x by

z =
x− ηx

σx

(1.31)

tends to a standard normal distribution as the number N of random variables in

Eq. (1.28) approaches infinity

lim
N→∞

pz(z) =
1√
2π

exp

(

−z
2

2

)

. (1.32)

In the limit in Eq. (1.32), we cannot use the random variable x because both

its mean ηx as well as its variance σ2
x can grow without bound, as explained in

Hyvärinen et al. (2001).

According to Papoulis (1991), in the case of i. i. d. random variables xi with

smooth p. d. f.’s, the central limit theorem already holds approximately for N = 5

random variables.

A proof of the central limit theorem as stated in Eq. (1.30) can be found in

Papoulis (1991).

1.5 Higher-Order Statistics

Higher-order statistics, covered in this section, represent an extension of the no-

tions of the mean value and the correlation as well as the covariance of random

variables. They include higher-order moments and cumulants.

In this context, let us introduce the multidimensional characteristic function

Φ(ω1, . . . , ωN) corresponding to a set of N random variables x1, . . . , xN (Mathews

11
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and Sicuranza, 2002)

Φ(ω1, . . . , ωN) = E
{
ej(ω1x1+···+ωNxN )

}
(1.33a)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
px(x1, . . . , xN)ej(ω1x1+···+ωNxN )dx1 · · · dxN ,

(1.33b)

where j is the imaginary unit such that j2 = −1. Apparently, the characteristic

function Φ(ω1, . . . , ωN) is derived from the joint p. d. f. px(x1, . . . , xN) as a Fourier-

type transformation.

1.5.1 Moments

The joint moments of order r = k1 + · · · + kN of a set of N real-valued random

variables x1, . . . , xN are defined as (Mathews and Sicuranza, 2002)

mom
(

xk1
1 , . . . , x

kN

N

)

= E
{

xk1
1 · · · xkN

N

}

(1.34a)

=
∂rΦ(ω1, . . . , ωN)

∂k1(jω1) · · · ∂kN (jωN)

∣
∣
∣
∣
∣
ω1=···=ωN=0

. (1.34b)

The moments as defined by Eq. (1.34b) are actually the coefficients of the Taylor

series expansion of the joint characteristic function Φ(ω1, . . . , ωN ) at the point

ω1 = · · · = ωN = 0.

On the other hand, the moments can be computed as expectations of products

of random variables as suggested by Eq. (1.34a).

For a single random variable xi, Eq. (1.34a) comprises:

• as the first moment (N = 1, r = k1 = 1) the mean value ηxi
of the random

variable xi, as introduced in Section 1.3.1,

mom (xi) = E{xi} = ηxi
(1.35)

• as the second moment (N = 1, r = k1 = 2) the average power in the random

variable xi (Hyvärinen et al., 2001), or more specifically, from Eq. (1.16)

mom
(
x2

i

)
= E

{
x2

i

}
= σ2

xi
+ η2

xi
(1.36)

For two random variables xi and xj, Eq. (1.34a) includes:

• as the moment of second order (N = 2, k1 = k2 = 1) the correlation Rij

12
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between the two random variables xi and xj (cf. Section 1.3.1)

mom (xixj) = E{xixj} = Rij. (1.37)

Since the expectation in Eq. (1.37) involves a product between two random vari-

ables, correlation (and, just as well, covariance) are often called second-order statis-

tics.

1.5.2 Cumulants

The joint cumulants of order r = k1 + · · · + kN of a set of N real-valued random

variables x1, . . . , xN are defined as (Mathews and Sicuranza, 2002)

cum
(

xk1
1 , . . . , x

kN

N

)

=
∂r ln Φ(ω1, . . . , ωN)

∂k1(jω1) · · · ∂kN (jωN)

∣
∣
∣
∣
∣
ω1=···=ωN=0

, (1.38)

where ln(·) denotes the logarithm to the base e. Similar to the case for moments

as discussed in the previous section, the cumulants as defined by Eq. (1.38) are

obtained as the coefficients of the Taylor series expansion of the natural logarithm

of the joint characteristic function Φ(ω1, . . . , ωN) at the point ω1 = · · · = ωN = 0.

In Mathews and Sicuranza (2002), there can be found a general relationship

between joint cumulants and moments of order r = N allowing the computation

of the joint cumulants of order N from the joint moments. The latter can in turn

be estimated using Eq. (1.14). That is how cumulants can be evaluated in practice

in a simple way (Hyvärinen et al., 2001).

Let us again consider first the case of a single random variable xi, so that N = 1

in Eq. (1.38). For simplicity, the random variable xi is assumed to be zero-mean.

The first-order cumulant can then be shown to equal the first-order moment, or

zero in this case. Likewise, the second-order and third-order cumulants equal

the second-order moment and the third-order moment, respectively (Mathews and

Sicuranza, 2002):

cum (xi) = 0 (1.39)

cum
(
x2

i

)
= mom

(
x2

i

)
= E

{
x2

i

}
(1.40)

cum
(
x3

i

)
= mom

(
x3

i

)
= E

{
x3

i

}
. (1.41)

Note that the third-order cumulant cum (x3
i ) is called skewness in the literature.

Conversely, the fourth-order cumulant is different from the fourth-order moment.

13
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Because of its importance, we discuss it separately in the next subsection.

In Hyvärinen et al. (2001), the following formulae can be found for the multi-

variate case of the zero-mean random variables xi, xj, xk and xl:

cum (xixj) = mom (xixj) = E{xixj} (1.42)

cum (xixjxk) = mom (xixjxk) = E{xixjxk} (1.43)

cum (xi, xj, xk, xl) = E{xixjxkxl} − E{xixj} E{xkxl}
− E{xixk} E{xjxl} − E{xixl} E{xjxk} .

(1.44)

Cumulants of orders higher than the forth order are seldom used in practice

(Hyvärinen et al., 2001), which is why we stop our discussion here at the forth

order.

1.5.2.1 Kurtosis

The forth-order cumulant of a single zero-mean random variable xi is termed kur-

tosis and given by (Hyvärinen et al., 2001)

kurt (xi) := cum
(
x4

i

)
= E

{
x4

i

}
− 3

(
E
{
x2

i

})2
. (1.45)

As indicated in Hyvärinen et al. (2001), the kurtosis can be used as the simplest

quantitative measure of non-Gaussianity of zero-mean symmetric distributions.

More precisely, Mathews and Sicuranza (2002) show that for a random variable

with a Gauss distribution, all cumulants of order larger that two, and with it the

kurtosis, are zero.

1.5.3 Properties of Moments and Cumulants

Moments and cumulants possess, among others, the following properties (Mathews

and Sicuranza, 2002):

1. The homogeneity property holds for both moments and cumulants. To be

exact, given a set of random variables x1, . . . , xN and a set of constants

a1, . . . , aN , it holds that

mom (a1x1, . . . , aNxN) = a1 · · · aN mom (x1, . . . , xN) , (1.46)

cum (a1x1, . . . , aNxN) = a1 · · · aN cum (x1, . . . , xN) . (1.47)
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2. If a subset of the N random variables x1, . . . , xN is statistically independent

of the remaining ones, the cumulant of order N is identically equal to zero,

i. e.

cum (x1, . . . , xN) = 0. (1.48)

Note that this is not generally true for the moment of order N .

3. If a group of random variables x1, . . . , xN is statistically independent of an-

other group of random variables y1, . . . , yN (cf. Section 1.3.3), it holds that

cum (x1 + y1, . . . , xN + yN) = cum (x1, . . . , xN) + cum (y1 + . . . , yN) .

(1.49)

1.6 Gauss Distribution

The multivariate (or, joint) Gauss distribution for an N -dimensional random vec-

tor x =
[

x1 · · · xN

]T

is defined by (Hyvärinen et al., 2001)

px(x) =
1

(2π)
N
2

√
det Cx

exp

[

−1

2
(x − ηx)

T
C−1
x (x − ηx)

]

, (1.50)

where ηx is the mean vector and Cx is the covariance matrix of the distribution.

From Eq. (1.50), the well-known p. d. f. of a single random variable can be obtained

easily.

1.6.1 Properties of the Gauss Distribution

As exposed in Hyvärinen et al. (2001), the Gauss distribution has the following

properties:

1. A random variable constituted as a linear combination of Gaussian-distrib-

uted random variables is Gaussian again.

2. For Gaussian-distributed random variables, uncorrelatedness is indeed equiv-

alent to statistical independence, which is proven in Papoulis (1991).

1.6.2 Gaussianity as Measured by Kurtosis

In Independent Component Analysis (Section 5.3), there is often the need for a

quantitative measure of the departure of a distribution from the Gauss distribution.
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We have already touched on this issue in Section 1.5.2, where the kurtosis turned

out to be potentially suitable for that purpose. To repeat, kurtosis is always zero

for a Gauss distribution, whereas most other distributions generally have a kurtosis

different from zero.

Of course, one can think of (non-Gaussian) distributions that do have zero kur-

tosis, but where some or all cumulants of order higher than the forth are nonzero.

Even so, according to Hyvärinen et al. (2001) such densities are considered rather

rare in practice.

In this context, a distribution whose kurtosis is positive is called super-Gaussian.

A typical example of such a super-Gaussian distribution is the Laplace distribution

px, Laplace(x) shown in Fig. 1.2(a) (Hyvärinen et al., 2001). It is given for a zero-

mean random variable x as

px, Laplace(x) =
λLaplace

2
exp (−λLaplace |x|), (1.51)

with λLaplace the parameter of the distribution.

On the other hand, a distribution with a negative kurtosis is called sub-Gaussian

(Hyvärinen et al., 2001). As an illustration for the zero-mean case, consider the

uniform distribution px, Uniform(x) depicted in Fig. 1.2(b)

px, Uniform(x) =







1
∆Uniform

, |x| ≤ ∆Uniform

2

0 otherwise,
(1.52)

where the parameter ∆Uniform determines the width and height of the distribution.

In both figures, the standardized normal distribution with zero kurtosis is also

plotted for reference.
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1 2−1−2

1√
2

1√
2π

x0

px(x)

(a)

1 2−1−2

1√
2π

1
2
√

3

x0

px(x)

(b)

Figure 1.2: Examples of distributions with zero mean and unit variance, but differ-
ent kurtoses. (a) Laplacian distribution, super-Gaussian. (b) Uniform
distribution, sub-Gaussian. For comparison, the standardized normal
distribution is also plotted (dotted).
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The variables occurring in the mathematical descriptions of distributions are called

parameters of the distribution (Kreyszig, 1999). In practice, the exact value of the

parameters of a distribution are usually unknown, so that we have to content

ourselves with approximations thereof. As such an approximation we consider

here the so-called (point) estimate of the parameter, which is computed from a

finite set of real-world data samples (Kreyszig, 1999).

In this chapter we treat some properties of estimates, as well as the popular

maximum likelihood method for parameter estimation.

2.1 Properties of Estimates

Assume that there are K data samples x[k], k = 1, . . . , K at our disposal, and let

ϑ̂ denote the estimate of the single parameter ϑ that is of interest to us. Then,

according to Bartsch (1999), the estimate ϑ can be characterized by the following

criteria:

• Unbiasedness: The estimate ϑ̂ is called unbiased if its bias

b = E
{

ϑ̂
}

− ϑ (2.1)

is zero. In other words, the expected value of an unbiased estimate is the

true value of the parameter

E
{

ϑ̂
}

= ϑ. (2.2)

• Consistency: The estimate ϑ̂ is called consistent if it converges to the true

parameter ϑ as the number of data samples K increases.

• Efficiency: The variance of ϑ̂, which is itself a random variable, should be as

low as possible.

• Robustness: The estimate ϑ̂ should not be corrupted by extreme (erroneous)

values.
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2.2 Maximum Likelihood Method

Suppose the probability density function (p. d. f.) px(x) of a random variable x de-

pends on several parameters of unknown value that we collect in an r-dimensional

parameter vector

ϑ =
[

ϑ1 · · · ϑr

]

]T (2.3)

and we are given K observations x[k] of the random variable x

x[k], k = 1, . . . , K. (2.4)

The key concept of the maximum likelihood method is to decide on the value of

the parameter vector that is most likely to have generated the observations x[k]

(Haykin, 2002). Here, for randomly drawn observations, this parameter vector can

be found at the global maximum of the so-called likelihood function

` (ϑ) = px(x[1]|ϑ) · · · px(x[K]|ϑ), (2.5)

which according to basic concepts of probability theory consists of the product

of the likelihood of the single observations. In Eq. (2.5), px(x[k]|ϑ) explicitly

shows the dependence of the p. d. f. on the parameter vector ϑ. Note that the

likelihood function is a function of the parameter vector ϑ only and that the

random variable x is assumed known. At a maximum inside the domain of the

likelihood function ` (ϑ), the gradient with respect to the parameter vector has to

be zero (cf. Section 4.1)

∂` (ϑ)

∂ϑ

!
= 0. (2.6)

A solution of Eq. (2.6) is called maximum likelihood estimate for ϑ and is denoted

by ϑ̂ (Kreyszig, 1999).

In some cases, it is more convenient to consider the log-likelihood function instead

L (ϑ) = ln ` (ϑ) , (2.7)

which can be used in the optimization problem just as well due to the monotonicity

of the natural logarithm. In other words, the maximum likelihood estimate ϑ̂ is
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likewise obtained as the solution of the equation

∂ ln ` (ϑ)

∂ϑ

!
= 0. (2.8)

Note that the most efficient (unbiased) estimate, i. e. the one whose variance

reaches the so-called Cramér-Rao lower bound, can be obtained using the maximum

likelihood method (Haykin, 2002).

20



3 Information Theory

One approach to solving the problem of estimating the parameters of the Inde-

pendent Component Analysis model (cf. Section 8) is based on the information-

theoretic concept of mutual information presented in this chapter alongside the

notions of entropy and negentropy of random variables. Furthermore, we show

how to approximate entropy and with it negentropy and mutual information.

3.1 Entropy

3.1.1 Entropy of a Discrete-Valued Random Variable

In Papoulis (1991), the entropy H(x) of a single discrete-valued random variable

x with probabilities pi, i = 1, . . . , N is defined as

H(x) = −
N∑

i=1

pi log pi, (3.1)

where the logarithm is usually to the base 2 (Hyvärinen et al., 2001).

By examining the shape of the function inside the summation it is easy to show

that the entropy H(x) of a discrete-valued random variable x is always nonnegative

0 ≤ H(x) <∞. (3.2)

The entropy H(x) can be used as a measure of the uncertainty about a discrete-

valued random variable x (Papoulis, 1991).

3.1.2 Differential Entropy

Along the lines of Eq. (3.1), according to Papoulis (1991) the joint differential1

entropy h(x) of N continuous-valued random variables x =
[

x1 · · · xN

]T

with

1For continuous-valued random variables, the term differential entropy is frequently used
(Hyvärinen et al., 2001).
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corresponding joint p. d. f. px(x) is defined by the multidimensional integral

h(x) = −
∫ ∞

−∞
px(x) log px(x)dx, (3.3a)

which can be considered a mathematical expectation as introduced in Section 1.2

h(x) = E{− log px(x)} . (3.3b)

Note that the range of the differential entropy h(x) of continuous-type random

variables x spans the whole set of real numbers (Papoulis, 1991)

−∞ < h(x) < +∞. (3.4)

If only differences between differential entropies are considered, e. g. in the defini-

tion of negentropy in Section 3.3, entropies can be used as a measure of uncertainty

about the random variables involved exactly like the entropy in the case of discrete

random variables (Papoulis, 1991).

For more information about the link between entropy and its differential coun-

terpart, consult Papoulis (1991).

3.1.3 Entropy of a Transformation

In Hyvärinen et al. (2001), the joint differential entropy h(y) of the invertible

transformation

y = f(x) (3.5)

is shown to equal

h(y) = h(x) + E{log |det Jf (x)|} , (3.6)

where Jf (x) is the Jacobian matrix of the vector function f evaluated at the point

x (cf. Eq. (1.8)).

As a special case consider the linear transformation

y = Ax, (3.7)

with a matrix A of suitable size, in which case Eq. (3.6) yields for the joint differ-
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ential entropy h(y) of the output of the transformation the expression

h(y) = h(x) + log |det A| . (3.8)

Note that the joint differential entropy h(x) remains invariant under the applica-

tion of orthogonal transformations because for orthogonal matrices A (Bartsch,

1999)

|det A| = 1, (3.9)

log |det A| = 0, (3.10)

and therefore from Eq. (3.8)

h(y) = h(x). (3.11)

3.1.4 Maximum Entropy Distributions

It can be shown that the entropy H(x) of a discrete-valued random variable x is

maximized if all N events possible for x are equally likely (Papoulis, 1991), i. e.

pi =
1

N
. (3.12)

In contrast, in the case of continuous-valued random variables x, among all

distributions with a given correlation matrix Rx, the multidimensional Gaussian

distribution with zero mean introduced in Section 1.6 is the one maximizing the

joint differential entropy h(x) (Papoulis, 1991). In other words, with what we said

in Section 3.1.2 about the entropy measuring the uncertainty about the random

variables, by settling on the distribution possessing the maximum entropy we make

the minimum number of assumptions on the data (Hyvärinen et al., 2001).

3.2 Mutual Information

Primarily, the mutual information I(x1, x2) of the two random variables x1 and x2

is defined as (Papoulis, 1991)

I(x1, x2) = I(x2, x1) =

∫ ∞

−∞

∫ ∞

−∞
px1,x2(x1, x2) log

px1,x2(x1, x2)

px1(x1)px2(x2)
dx1dx2.

(3.13)
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Papoulis (1991) shows that the mutual information I(x1, x2) is always nonnegative.

Furthermore, the mutual information I(x1, x2) is zero if and only if x1 and x2 are

statistically independent because then by Eq. (1.24) the joint p. d. f. px1,x2(x1, x2)

can be factorized

px1,x2 = px1(x1)px2(x2), (3.14a)

and Eq. (3.13) yields

I(x1, x2) =

∫ ∞

−∞

∫ ∞

−∞
px1,x2(x1, x2) log

px1(x1)px2(x2)

px1(x1)px2(x2)
dx1dx2 = 0. (3.14b)

Similarly to Eq. (3.13), it is convenient in Independent Component Analysis

(Section 5.3) to define the mutual information I(x) of the random variables x =
[

x1 · · · xN

]T

as (Hyvärinen et al., 2001)

I(x) =

∫ ∞

−∞
px(x) log

px(x)

px1(x1) · · · pxN
(xN)

dx, (3.15a)

which, using the definition of differential entropy in Eq. (3.3a), can also be written

as

I(x) =
N∑

i=1

h(xi) − h(x). (3.15b)

Here again, as shown in Hyvärinen et al. (2001), the mutual information I(x) is

always nonnegative and zero for statistically independent random variables x only.

In this sense, mutual information can be used as a kind of distance between two

multidimensional p. d. f. ’s, namely

1. the joint p. d. f. px(x) and

2. the product of the marginal densities pxi
(xi).

In fact, the integral in Eq. (3.15a) corresponds to the so-called Kullback-Leibler

divergence Dpx‖
Q

i pxi
between these two densities (Haykin, 2002).
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3.3 Negentropy

In Hyvärinen et al. (2001), the so-called negentropy N (x) of the random variables

x =
[

x1 · · · xN

]T

is defined as

N (x) = h(xGauss) − h(x), (3.16)

where xGauss is a random vector with multidimensional Gaussian distribution (cf.

Section 1.6) of the same covariance matrix as x. Since the multidimensional Gaus-

sian distribution possesses the maximum entropy as discussed in Section 3.1.4 for

a given correlation matrix2, i. e.

h(xGauss) ≥ h(x), (3.17)

the negentropy N (x) is always nonnegative and zero if and only if the random

vector x is jointly Gaussian distributed. Accordingly, the negentropy N (x) can

be used as a measure of non-Gaussianity of the random vector x.

3.3.1 Negentropy of a Linear Transformation

Using the results derived in Section 3.1.3 for the differential entropy of a linear

transformation, in particular Eq. (3.8), as well as the linearity of the negentropy

operator, one can show easily that negentropy is not changed by an invertible

linear transformation of the form

y = Ax, (3.18)

such that in this case

N (y) = N (x) . (3.19)

3.3.2 Approximation of Negentropy

From a practical point of view, the direct usability of the negentropy N (x) as a

measure of non-Gaussianity is limited for the following reasons, evident from the

definition of differential entropy, on which negentropy is based (Hyvärinen et al.,

2Note that xGauss has the same covariance matrix as x. On the other hand, the maximum
entropy property in Section 3.1.4 is defined using the correlation matrix. Nevertheless, we
can exchange the two in this case since entropy is blind to additive constants, as can be seen
from Eq. (3.6).
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2001):

• The formula includes the p. d. f., which is (1) seldom known in practice and

(2) not at all straightforward to estimate.3

• The integral involved in the formula might be computationally too expensive

to evaluate for real-time application even if the p. d. f. is known.

Our methods for solving the problem of Independent Component Analysis (Sec-

tion 5.3) that use negentropy are all based on approximations of this quantity, in

particular on approximations based on cumulants or on approximations based on

nonpolynomial functions. Here, it suffices to consider approximations of negen-

tropy of a single random variable only.

3.3.2.1 Approximation of Negentropy by Cumulants

In approximating negentropy, let us assume that the distribution of the random

variable under consideration is not far away from the Gaussian distribution. Set-

ting the Gaussian distribution as the point of reference seems reasonable since we

intend to use negentropy as a measure of non-Gaussianity. Then, in a classical

approach to approximating negentropy, we can use a truncated Gram-Charlier ex-

pansion of the p. d. f. of the standardized random variable x in the vicinity of the

standardized Gaussian distribution and a second-order Taylor series expansion of

the logarithm4 involved in the definition of differential entropy. A step-by-step

derivation for the interested reader can be found in Hyvärinen et al. (2001). We

obtain for the negentropy N (x) of a standardized random variable x

N (x) ≈ 1

12

(
E
{
x3
})2

+
1

48
kurt (x)2

, (3.20a)

where kurt (x) denotes the kurtosis of the random variable x defined in Sec-

tion 1.5.2.1. Note that the first term involving the skewness E{x3} vanishes for

symmetric distributions, so we are left with the expression

N (x) ≈ 1

48
kurt (x)2

. (3.20b)

3Elaborating on the latter issue, we state that for example a simple histogram estimate of the
p. d. f. would not be appropriate in this context since it would lead inherently to a description
of discrete-valued random variables only, and it is not the Gaussian distribution that has
the maximum entropy for discrete-valued random variables (cf. Section 3.1.4). We conclude
that the negentropy derived from such a histogram estimate would not be minimized by
a Gaussian-distributed random variable and therefore not be a suitable measure of non-
Gaussianity.

4Here, the logarithm is to the base e, though.
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As pointed out by Hyvärinen et al. (2001), the approximation of negentropy

in Eq. (3.20) is computationally very simple. As a drawback, those very authors

mention the sensitivity of finite-sample estimators to outliers with large values (lack

of robustness, cf. Section 2.1). Furthermore, cumulants basically measure the tails

of distributions while having a tendency to being unaffected by structure near the

center of the distribution since estimators of cumulants are stronger influenced

by large values of the random variable. This is especially true for cumulants of

higher-order.

The above-mentioned limitations can be overcome by the approximation of ne-

gentropy by nonpolynomial functions presented in the next section.

3.3.2.2 Approximation of Negentropy by Nonpolynomial Functions

As an alternative to the approximation of negentropy by cumulants, here we men-

tion a method based on an approximative maximum entropy method as proposed

in Hyvärinen et al. (2001). More specifically, suppose that we have estimated some

expectations

E{Fi(x)} =

∫ ∞

−∞
px(x)Fi(x)dx = ci, i = 1, . . . , N, (3.21)

where {Fi(x)} is a set of N nonlinear functions in x, and we want to employ

the maximum entropy method to help us in making the right choice from all

distributions compatible with the estimated expectations. To see the reason for

this, bear in mind that in Independent Component Analysis we always try to

minimize negentropy and that in the end the minimization of a cost function

based on the maximum entropy distribution hopefully minimizes the true entropy

as well.

Unfortunately, the nonlinear functions Fi(x) in Eq. (3.21) make it impossible to

solve analytically the problem of finding the maximum entropy distribution. In

order to find a reasonable simplification, remember from Section 3.1.4 that the

maximum entropy has the form of a Gaussian distribution. Therefore, we make

a first-order approximation of the exponential function describing our maximum

entropy distribution. In other words, we again consider a random variable x in

the vicinity of the Gaussian distribution, which is similar to what we did in the

previous section.

In the last step, once again using a second-order Taylor series expansion of the

logarithm in the definition of differential entropy, from the resulting approxima-

tive maximum entropy distribution we obtain the following approximation of the
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negentropy N (x) (Hyvärinen et al., 2001):

N (x) ≈ 1

2

N∑

i=1

E{Fi(x)}2
. (3.22)

It can be shown that the approximation in Eq. (3.22) is a suitable measure of non-

Gaussianity because it is minimized for a Gaussian-distributed random variable.

In Hyvärinen et al. (2001), you can find guidelines on how to choose the best

functions Fi(x) in general. In particular, the functions Fi(x) should not grow faster

than quadratically with increasing absolute value of the independent variable x

since otherwise the resulting approximation of negentropy might lack the desired

robustness property.

The simplest approximation of negentropy based on nonpolynomial functions

uses just one nonlinear function G(x) so that N = 1 in Eq. (3.22) and in Eq. (3.21):

N (x) ≈ k1

(
E{G(x)} − E{G(ν)}

)2
(3.23)

with k1 a proper constant and ν denoting a standardized random variable with

Gaussian distribution (Hyvärinen et al., 2001). For the nonlinear function G(x)

in Eq. (3.23), Hyvärinen et al. (2001) propose

G1(x) =
1

a1

ln cosh(a1x), (3.24a)

where the constant 1 ≤ a1 ≤ 2 is often chosen as unity, or the function

G2(x) = −e−
x2

2 . (3.24b)

Both the function G1(x) and the function G2(x) are plotted in Fig. 3.1. For

purposes of comparison, the forth power of x corresponding to the approximation

of negentropy by cumulants as discussed in the previous section is also shown,

which obviously grows much faster with increasing absolute values of x.

To conclude, as mentioned in Hyvärinen et al. (2001), the approximation of

negentropy by nonpolynomial functions is both more robust against erroneous

outliers and more accurate than the approximation of negentropy by cumulants,

yet of comparable computational complexity.
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1 2 3−1−2−3

1

2

−1

ln coshx

−e−
x2

2

x4

x0

Figure 3.1: Two functions suitable for approximating negentropy by one nonlinear
function. For reference, the forth power of x is also shown.
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4 Optimization Theory

4.1 Basic Concepts

Suppose we want to tackle a so-called optimization problem, i. e. we are given a

function I that we wish to optimize (maximize or minimize). In optimization

theory, this function I is typically called the objective function (Kreyszig, 1999),

whereas in the field of adaptive signal processing the terms cost function or contrast

function are more common (Haykin, 2002).

4.1.1 Constrained and Unconstrained Optimization

As for example in the context of blind deconvolution in the frequency domain, the

cost function I may generally depend on several complex-valued variables

I = I (w1, . . . , wN) = I (w) , (4.1)

where we introduced the vector notation w =
[

w1 · · · wN

]T

for convenience of

presentation.

In contrast to this unconstrained optimization, additional equations or inequal-

ities (constraints) involving the variables w are sometimes to be met at the same

time, e. g. in the case of Independent Component Analysis (Section 5.3), where in

addition to minimizing some contrast function we often require our solution vector

to be of unit norm. This kind of optimization is called constrained optimization.

4.1.2 Minima and Maxima

From calculus recall the definition of local minima and maxima (Bartsch, 1999,

Kreyszig, 1999):

Local minimum A differentiable function I (w) is said to have a local (or, relative)

minimum at the point wext if in a region R around that point wext it holds
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that

I (w) > I (wext) for all w 6= wext. (4.2)

Local maximum Likewise, a differentiable function I (w) is said to have a local

(or, relative) maximum at the point wext if in a region R around that point

wext it holds that

I (w) < I (wext) for all w 6= wext. (4.3)

Minima and maxima together are called extrema.

If Eqs. (4.2) and (4.3) hold for all w inside the domain of the cost function I (w),

the point wext is called global (or, absolute) minimum and maximum, respectively.

A necessary condition for the point wext to be an extremum of the cost function

I (w) is that all partial derivatives ∂I(w)
∂w1

, . . . ,
∂I(w)
∂wN

must exist and be zero at wext.

Since these partial derivatives are nothing but the components of the gradient

grad I (w) of the scalar cost function I (w) = I (w1, . . . , wN)

grad I (w) =
∂I (w)

∂w
=







∂I(w)
∂w1
...

∂I(w)
∂wN






, (4.4)

we can also write

grad I (wext)
!
= 0. (4.5)

Since the condition in Eq. (4.5) is not also a sufficient condition for wext to

be an extremum, after solving this equation, we still have to determine whether

wext is in fact a maximum or a minimum. Even worse, our solution wext could

also be a saddle-point, which is not an extremum in the first place as pointed out

by Kreyszig (1999).

4.1.3 Solving Optimization Problems by Numerical Methods

If the cost function I (w) is a general nonlinear function, it might not be possible

to solve Eq. (4.5) analytically at all. In this case, we have to fall back to numerical

methods for solving Eq. (4.5), a few of which are presented in this chapter. More

specifically, we will cover the fixed-point iteration, Newton’s method and the method

of steepest descent.
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4.2 Solution of Equations by Iteration

Consider a system of N nonlinear equations in N independent variables w1, . . . , wN







g1(w1, . . . , wN) = 0
... N ≥ 2

gN(w1, . . . , wN) = 0

(4.6a)

or in matrix form

g(w) = 0, (4.6b)

where g(w) is a known (given) vector function, i. e. a vector of scalar functions

gi(w), i = 1, . . . , N , and w is the vector of independent variables. The vector

function g(w) could for example be the gradient of a scalar cost function I (w)

as required for an extreme value of I (w). A vector wopt such that g(wopt) = 0

is met is called a solution of Eq. (4.6) (Kreyszig, 1999). Analytical formulae for

the task of solving Eq. (4.6) exist only in very simple cases.1 Therefore, we almost

entirely depend on numerical methods for solving the equation, a few of which are

discussed in the following sections.

4.2.1 Update Rule

The numerical methods considered here are all iterative methods. The idea of

iterative methods is to approach the true solution wopt of a given equation step

by step by starting from an initial guess w[0] and then iteratively computing a

sequence of vectors w[1],w[2], . . . which approximate the desired solution better

and better each iteration step (Kreyszig, 1999). More precisely, we compute w[1]

from w[0], then w[2] from w[1] and so on, or – generally – we recursively determine

the new value w[n + 1] from the old value w[n] according to a specific update

rule ϕ(w[n]), where n denotes the iteration step.2 Let us formalize this update

procedure by

w[n+ 1] = ϕ(w[n]), n = 0, 1, . . . . (4.7)

1To be more specific, according to Bartsch (1999) no general formulae are possible for algebraic
equation of 5th and higher degree.

2In general, the update rule can of course include longer memory, e. g. in some iterative methods
w[n + 1] explicitly depends not only on w[n] but also on w[n − 1].
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4.2.2 Convergence

Needless to say, the iterative method should eventually lead to the true solution

wopt, i. e.

lim
n→∞

w[n] = wopt. (4.8)

Whenever Eq. (4.8) holds for a particular choice of w[0], the iteration process

Eq. (4.7) is said to converge onto the true solution wopt (Kreyszig, 1999). Other-

wise, the series w[n] diverges (Kreyszig, 1999, Bartsch, 1999).

4.2.3 Order of an Iteration Method, Convergence Speed

The speed of convergence of an iteration method can be measured by the order

of the iteration method (Kreyszig, 1999). For the analysis of the link between

the order and the speed of convergence, define the departure of the solution in

iteration step n from the true solution wopt by the error ε[n]. Thus,

ε[n] = w[n] − wopt. (4.9)

Then according to Deuflhard and Hohmann (2002), a sequence w[0],w[1], . . . con-

verges of order p ≥ 1 if there exists a constant M such that

‖ε[n+ 1]‖ ≤M ‖ε[n]‖p
, M ∈ R≥0. (4.10)

In practice, we frequently encounter iteration processes of

1. linear convergence, in which case p = 1 and M < 1 in Eq. (4.10) and

2. quadratic convergence, in which case p = 2 in Eq. (4.10).

Obviously, we prefer algorithms with a higher order because then the desired

numerical accuracy of the solution is reached in just a small number of iterations.

For example, the typical behavior of iteration methods of quadratic convergence is

that the number of significant digits of the computed solution is roughly doubled

from one iteration step to the next (Deuflhard and Hohmann, 2002, Kreyszig,

1999).

4.2.4 Termination Criterion

Of great practical importance is the question of when to stop the iteration pro-

cedure. We can base one plausible termination criterion on reaching the solution
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with a desired accuracy, i. e. we quit our computations in step n + 1 and take

the value of that iteration step w[n + 1] as the solution to Eq. (4.6) when either

the relative error or the absolute error becomes sufficiently small (Bartsch, 1999).

More specifically, for a chosen relative error δrel, we stop when it holds that

‖w[n+ 1] − w[n]‖ ≤ ‖w[n+ 1]‖ δrel, δrel ∈ R>0, (4.11)

whereas for an absolute error δabs, we stop when

‖w[n+ 1] − w[n]‖ ≤ δabs, δabs ∈ R>0. (4.12)

In both equations, ‖·‖ denotes a suitable vector norm, e. g. the Euclidean norm

defined as

‖w‖ =
√

w1
2 + · · · + wN

2. (4.13)

As pointed out in Kreyszig (1999), such termination criteria do not imply conver-

gence. Moreover, Eqs. (4.11) and (4.12) are blind to changes in sign from w[n] to

w[n+ 1].

Independently of reaching the solution with a desired accuracy, we should abort

the iteration procedure when the allowed number of iterations is exceeded, in which

case the algorithm either diverges for a given initial value w[0] or converges in an

unacceptably slow way. Consequently, then the algorithm has failed and we should

refrain from using the value of the last iteration as a solution to Eq. (4.6).

4.2.5 Multiple Solutions

Whenever Eq. (4.6) possesses multiple solutions, it is of interest which solution

an iterative algorithm converges to for a specific initial value w[0]. On the other

hand, an iterative algorithm should be able to yield all possible solutions.

4.2.6 Summary

In the diagram of Fig. 4.1 we summarize the steps generally involved in iterative

algorithms. From this figure we conclude that implementing iterative algorithms

on computers is not too complex an issue since basically the same code is executed

in each iteration, albeit on different data (Kreyszig, 1999).
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Begin

Initialize w[0]

n = −1

n = n+ 1

w[n+ 1] = ϕ(w[n])

‖w[n+1]−w[n]‖≤δrel‖w[n+1]‖+δabs ?

wopt = w[n]

End

yes

no

Figure 4.1: Flow diagram for iterative algorithms. Note that only one of the con-
stants δabs or δrel is nonzero.

4.3 Fixed-Point Iteration

In the fixed-point iteration (Kreyszig, 1999, Bartsch, 1999) for solving systems of

equations of the form in Eq. (4.6), we transform Eq. (4.6) algebraically to the

so-called fixed-point form

w = ϕ(w). (4.14)

Usually, more than one ϕ(w) can be found for a given system (Deuflhard and

Hohmann, 2002).

According to Kreyszig (1999), a vector w∗ is called fixed point if it holds that

w∗ = ϕ(w∗). (4.15)

In other words, a fixed point w∗ is a point that remains unchanged under an

application of the mapping described by ϕ(w).
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Then, as suggested by Eq. (4.15), the update rule in the fixed-point iteration is

w[n+ 1] = ϕ(w[n]). (4.16)

It can be shown (Bartsch, 1999) that exactly one fixed point can be found if

there is a constant L such that

‖Jϕ(w)‖ ≤ L < 1, (4.17)

where Jϕ(w) is the Jacobian matrix of the vector function ϕ(w) and ‖·‖ denotes

a matrix norm.

The speed of convergence of the fixed-point iteration depends on the value of the

constant L in Eq. (4.17). To be more exact, the less L is, the faster the algorithm

converges (Bartsch, 1999).

wopt

ϕ(w[n])

w[n+ 1] = w[n]

ϕ′(w[n]) < 1

0 w[n]

w[n+ 1]

(a)

wopt

ϕ(w[n])

w[n+ 1] = w[n]

ϕ′(w[n]) > 1

0 w[n]

w[n+ 1]

(b)

Figure 4.2: Fixed-point iteration, one-dimensional case. (a) Convergence. (b) Di-
vergence. (Adapted from Kreyszig, 1999 and Bartsch, 1999, based on
source code from http://pstricks.de.)

Example 4.1 (Convergence and Divergence in Fixed-Point Iteration)

As an illustration of the fixed-point iteration, consider the examples in Fig. 4.2.

From Fig. 4.2(a) it is obvious that for both starting values the fixed-point iteration

converges toward the true solution wopt because the slope of Jϕ(w) = ϕ′(w[n]) is

apparently less than unity as required by the condition in Eq. (4.17).

In contrast, both starting values in Fig. 4.2(b) correspond to unstable series

since the slope of ϕ′(w[n]) is greater than unity. Consequently, in the latter case

the algorithm does not converge. “
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4.4 Newton’s Method

As another method for solving a system ofN nonlinear equations inN independent

variables w1, . . . , wN of the form

g(w) = 0, (4.18)

we consider Newton’s method. The idea of Newton’s method is to approximate

the nonlinear function g(w) in Eq. (4.18) by a linear function at a point w[0]

(Deuflhard and Hohmann, 2002). Expanding g(w) into a power series around the

starting point w[0] and neglecting higher order terms, we get from Eq. (4.18) in

the vicinity of the point w[0]

0 = g(w) ≈ g(w[0]) + Jg(w[0]) (w − w[0])
︸ ︷︷ ︸

:= ḡ(w)

, (4.19)

where Jg(w[0]) is the Jacobian matrix of g(w) evaluated at the point w[0] and

ḡ(w) is the linear approximation of g(w) at the point w[0]. The solution w[1] of

the equation

ḡ(w) = 0 (4.20)

is then

w[1] = w[0] − Jg
−1(w[0]) · g(w[0]) for det Jg(w[0]) 6= 0. (4.21)

In a similar fashion, Newton’s method now consists of iterating

w[n+ 1] = w[n] + ∆w[n], (4.22)

where instead of actually inverting the Jacobian matrix J g(w[n]) as suggested by

Eq. (4.21), we obtain the so-called Newton correction ∆w[n] by first solving the

system of linear equations

Jg(w[n]) · ∆w[n] = −g(w[n]), (4.23)

by any standard method (Deuflhard and Hohmann, 2002, Bartsch, 1999).

It can be shown that locally Newton’s method converges of second order (Deufl-

hard and Hohmann, 2002).
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P (w[n], g (w[n]))

w[n]w[n+ 1]

wopt

g(w)

0 w

y

Figure 4.3: Illustration of Newton’s method, adapted from Bartsch (1999).

Example 4.2 (Newton’s Method as a Linear Approximation)

Fig. 4.3 illustrates Newton’s method for a single nonlinear function g(w) and one

independent variable w. In this case, N = 1 in Eq. (4.18), and Eq. (4.22) reduces

to

w[n+ 1] = w[n] − 1
dg(w)
dw

∣
∣
∣
∣
∣
w=w[n]

·g(w[n]), (4.24)

where the derivative of g(w) is evaluated at the current w[n]. As we know, the

Taylor series expansion of the function g(w) in the vicinity of the point w[n] is

g(w) ≈ g(w[n]) +
dg(w)

dw

∣
∣
∣
∣
∣
w=w[n]

· (w − w[n]) . (4.25)

Equating Eq. (4.25) to zero and denoting the solution by w[n + 1], we get the

update rule in Eq. (4.24) after straightforward algebraic manipulations. “

As pointed out by Kreyszig (1999) for the one-dimensional case in the previous

example, we must pay attention to situations where the linear system of Eq. (4.23)

is ill-conditioned.
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4.5 Method of Steepest Descent

The last iterative algorithm we cover is the method of steepest descent. It is a

popular and old algorithm (Kreyszig, 1999) for finding points where the gradient

of some cost function I (w) is zero

grad I (w) =
∂I (w)

∂w

!
= 0. (4.26)

More precisely, to find potential minima of the cost function I (w), in each iteration

step we subtract3 from the current vector w[n] a vector pointing in the direction

of the gradient of the cost function I (w)

w[n+ 1] = w[n] − α[n]
∂I (w)

∂w

∣
∣
∣
∣
∣
w=w[n]

, n = 0, 1, . . . , (4.27)

where the gradient ∂I(w)
∂w

is evaluated at the point w[n] (Hyvärinen et al., 2001,

Haykin, 2002) and the positive scalar α[n] is called step-size parameter or learning

rate.

Geometrically, since the gradient always points in the direction of maximum

increase of a function, the procedure described in Eq. (4.27) corresponds to a

stepwise “downhill” move along the steepest path on the hyperplane described by

the cost function I (w). As noted in Hyvärinen et al. (2001), this yields a local

extremum in the neighborhood of the starting vector w[0].

4.5.1 Convergence Speed and Step-Size Parameter

The convergence of the method of steepest descent can be shown to be linear

(cf. Section 4.2.3). Actually, in the vicinity of the optimum wopt the speed of

convergence depends (1) on the Hessian matrix HI(w) of the cost function I (w)

HI(w) =
∂2I (w)

∂w2
=







∂2I
∂w2

1
· · · ∂2I

∂w1∂wN

...
. . .

...
∂2I

∂w1∂wN
· · · ∂2I

∂w2
N






, (4.28)

which measures the curvature of the cost function, and (2) on the step-size pa-

rameter α[n] (Hyvärinen et al., 2001). Consequently, stability and convergence

behavior are governed only by the value of the step-size parameter α if the cost

3Maxima are found similarly by adding a vector pointing in the direction of the gradient in
Eq. (4.27).
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function is fixed. Specifically, in choosing the step-size parameter too small, we

might not get convergence in an acceptable number of iteration steps. On the other

hand, if the step-size parameter is too large, the algorithm will become unstable.

Moreover, in stationary environments the step-size parameter should be damp-

ened with time (Hyvärinen et al., 2001)

α[n] =
β

β + n
, (4.29)

where for example β = 100.

wopt

α = 0.08

w[0]

w0

I (w)

(a)

wopt

α = 0.06

w[0]

w0

I (w)

(b)

Figure 4.4: Illustration of the method of steepest descent, one-dimensional case.
(a) Larger step-size parameter. (b) Smaller step-size parameter.

Example 4.3 (Convergence speed of the Method of Steepest Descent)

In Fig. 4.4, we compare the convergence speed of the method of steepest descent

optimizing a given cost function I (w) for two different values of the step-size

parameter α[n] = α, which is constant in this case. Here, both iterations start

from the same point w[0]. After the number of iteration steps considered in the

example, the update rule with the larger step-size parameter α = 0.08 produces a

solution that is obviously much closer to the optimum wopt than the one with the

smaller step-size parameter α = 0.06. “

4.5.2 Application to Specific Cost Functions

In many of the algorithms for solving the Independent Component Analysis model

parameters, the cost function I (w) has the form of a mathematical expectation

(cf. Section 1.2)

I (w) = E{f(w,x)} , (4.30)
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where the random vector x describes the available input data of the algorithm and

the expectation is computed with respect to the unknown joint p. d. f. px(x) of the

random vector of the input data. Thus, the update rule of the method of steepest

descent can be written as

w[n+ 1] = w[n] − α[n]
∂E{f(w,x)}

∂w

∣
∣
∣
∣
∣
w=w[n]

. (4.31)

4.5.2.1 Batch Learning

Note that in practice, the expectation in Eq. (4.31) can be estimated as discussed

in Section 1.14 from the samples that constitute the available data set. In the

literature, this is called batch learning (Hyvärinen et al., 2001).

4.5.2.2 Online Learning, Stochastic Gradient Algorithms

Sometimes, the batch learning paradigm introduced in the previous section may

not be the optimal choice. In particular, consider the following (Hyvärinen et al.,

2001):

• If employed in a nonstationary environment, the algorithm should allow for

(fast) tracking of the time-varying statistical properties of the input data

• Estimating the mathematical expectation in Eq. (4.31) at each iteration step

might be (1) inappropriate for computational reasons or (2) impossible if the

input data cannot be presented to the algorithm as a whole.

These are the application ranges of the so-called online algorithm (Hyvärinen

et al., 2001), where in the update rule described by Eq. (4.31) we use only one sam-

ple at a time, usually the most recent one, instead of estimating the mathematical

expectation

w[n+ 1] = w[n] − α[n]
∂f(w,x)

∂w

∣
∣
∣
∣
∣
w=w[n]

. (4.32)

This results in quite random directions of the gradient (Haykin, 2002, Hyvärinen

et al., 2001), for which reason the update rule in Eq. (4.32) is often called stochas-

tic gradient algorithm. Yet, under certain conditions (Hyvärinen et al., 2001), the

stochastic gradient algorithm converges onto the same solution as the correspond-

ing batch algorithm.
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4 Optimization Theory

The computational complexity of stochastic gradient algorithms is considerably

reduced with respect to the corresponding batch algorithms. On the other hand,

many more iteration steps are needed for convergence (Hyvärinen et al., 2001).

4.5.2.3 Shuffling of the Input Data

If applying the stochastic gradient algorithm in cases where the training set is

available a priori, we might need to cycle over the set more than once in order for

the algorithm to converge. Then, it is preferable to shuffle the samples, as pointed

out by Hyvärinen et al. (2001).

4.6 Constrained Optimization

4.6.1 Method of Lagrange Multipliers

The most classical approach to solving constrained optimization problems is the

method of Lagrange multipliers (Haykin, 2002), which is basically a technique

for converting constrained optimization problems into unconstrained optimization

problems with additional variables. See the reference for more details.

Example 4.4 (Method of Lagrange Multipliers)

As an example of an application of the method of Lagrange multipliers, let us

suppose we are interested in the maxima of the cost function I (w) under the

constraint that the norm of the vector w be unity

arg max
w

I (w) (4.33a)

‖w‖2 !
= 1. (4.33b)

First, we bring the constraint in Eq. (4.33b) to the form

C(w) = 0, (4.34)

so that it reads now

‖w‖2 − 1 = 0. (4.35)

Next, we form a new function q(w, λMP) as a combination of the original cost

function I (w) and the constraint in Eq. (4.35) (Haykin, 2002)

q(w, λMP) = I (w) + λMP

(
‖w‖2 − 1

)
, (4.36)
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4.6 Constrained Optimization

where the new scalar variable λMP is called the Lagrange multiplier. Maximization

of the new objective function q(w, λMP) with respect to the vector w yields the

condition

∂I (w)

∂w
+ 2λMPw

!
= 0. (4.37)

Eq. (4.37) is called the adjoint equation. The system of equations in Eq. (4.37)

along with the constraint in Eq. (4.35) constitute a new optimization problem in

the variables w and λMP that can be solved by any standard method.

To conclude, note from Eq. (4.37) that for the constraint optimization problem

in Eq. (4.33), the gradient always points in the direction of the vector w. “

4.6.2 Projection on the Constraint Set

A much simpler method for solving constrained optimization problems, which more

often than not suffices for the purposes of Independent Component Analysis, is the

method of projection on the constraint set (Hyvärinen et al., 2001). In the projec-

tion on the constraint set, we obtain an intermediate result w′[n] by first applying

an update rule ϕ(w[n]) as if we were to find an extremum in an unconstrained

optimization problem

w′[n] = ϕ(w[n]). (4.38a)

But after this, we project w′[n] orthogonally onto the constraint set. This is appli-

cable for instance when the constraint consists of the requirement that the solution

vector wopt be of unit norm. In this case, the constraint set is the N -dimensional

unit sphere, where N is the length of the vector w[n], and the projection corre-

sponds to dividing the vector w′[n] by its Euclidean norm in each iteration step

w[n+ 1] =
w′[n]

‖w′[n]‖ . (4.38b)

Example 4.5 (Projection on the Constraint Set)

In Fig. 4.5, all vectors involved in Eq. (4.38) are plotted for a twodimensional

example. To be more exact, the iteration starts with the vector w[n]. First, the

vector w′[n] is computed according to an update rule that adds a vector ∆w to

w[n]. Then, the vector is divided by its norm to yield w[n + 1] as the result in

this iteration step. Thus, in this example the constraint set is the unit circle. “
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1

w[n]

∆w
w′[n]

w[n+ 1]

Constraint set

w10

w2

Figure 4.5: Projection on the constraint set.

Appendix: Vector and Matrix Derivatives

In this appendix, we give some examples of gradient vectors, Hessian matrices,

and matrix gradients of some functions needed in Part II for the derivations of

various algorithms.

Note that the gradient of composite functions is computed along the lines of the

derivative of a composite function of one variable and likewise for the gradient of

products and quotients of functions (Hyvärinen et al., 2001).

Gradient Vector and Hessian Matrix of Scalar Functions

Example 4.6 (Inner Product)

As simple examples of gradients of a scalar function consider the gradient of the

inner product between the vector of independent variables w and a vector of

constants a of suitable size

∂aTw

∂w
=
∂wTa

∂w
= a. (4.39)

Since the gradient in Eq. (4.39) is constant, the Hessian matrix is the zero matrix

∂2aTw

∂w2
=
∂2wTa

∂w2
= 0. (4.40)

“

Example 4.7 (Quadratic Form)

Evaluating the gradient of a quadratic form in the variables wi with respect to this
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variables gives

∂wTAw

∂w
= Aw + ATw. (4.41)

From the gradient in Eq. (4.41), we get for the Hessian of the quadratic form

∂2wTAw

∂w2
= A + AT. (4.42)

Here, the matrix A is assumed square, yet not necessarily symmetric. “

Matrix Gradients of Scalar Functions

Let ∂I(W )
∂W

denote the matrix gradient of the function I (W ) with respect to the

M ×N matrix

W =







w11 · · · w1N

...
. . .

...

wM1 · · · wMN






. (4.43)

Here, the independent variables wij are arranged in matrix form for convenience.

The matrix gradient is defined as the matrix of partial derivatives (Hyvärinen

et al., 2001)

∂I (W )

∂W
=







∂I
∂w11

· · · ∂I
∂w1N

...
. . .

...
∂I

∂wM1
· · · ∂I

∂wMN






. (4.44)

Example 4.8 (Quadratic Form)

Consider as a cost function I (A) the quadratic form in the variables wi. Then,

the matrix gradient of the quadratic form with respect to the square matrix A is

∂wTAw

∂A
= wwT. (4.45)

This result is not to be confused with the derivative with respect to the variables

wi in Eq. (4.41). “

Example 4.9 (Determinant of a Matrix)

Using some properties of the determinant of a matrix as shown in Hyvärinen et al.

(2001), we get for the matrix gradient of the determinant of a matrix W with
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respect to that matrix

∂

∂W
det W =

(
W T

)−1
det W . (4.46)

Here is is assumed that the inverse of the transpose of W exists. “

Example 4.10 (Maximum Likelihood Estimation)

The following identity will be needed in Section 7 for the derivation of the natural

logarithm of the likelihood function.

∂

∂W
ln det W =

(
W T

)−1
. (4.47)

For a proof of Eq. (4.47) see Hyvärinen et al. (2001). “
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Part II

Blind Source Separation
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5 Introduction to Blind Source

Separation and Independent

Component Analysis

In this chapter, we first set the scene of the blind source separation problem.

Then, Independent Component Analysis is introduced as a widely used technique

for solving the blind source separation problem. Finally, we briefly discuss some

applications of Independent Component Analysis.

5.1 Blind Source Separation

s1 x1

s2 x2

...
...

sM xN

Mixer

Unknown environment

Sources Observations

Figure 5.1: Generation of observations xi in an unknown environment, adapted
from Haykin (2002).

To illustrate the problem of blind source separation, consider the generative

model (Hyvärinen et al., 2001) depicted in Fig. 5.1. Here, we observe N random

variables

x =
[

x1 · · · xN

]T

(5.1)

at the output of a mixer whose input are M random variables

s =
[

s1 · · · sM

]T

. (5.2)
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5.2 General Mixing Process

x1 y1

x2 y2

...
...

xN yM

Demixer

Observations Outputs

...

Learning

algorithm

...

Figure 5.2: Adaptive estimation of the original sources signals from observations
xi, adapted from Haykin (2002).

In blind source separation (BSS), the task is to unravel the effects of the mixing

process from knowledge of the output variables x alone (Haykin, 2002). More

specifically, given only the mixtures x, we want to find estimates

y =
[

y1 · · · yM

]T

(5.3)

that approximate the original sources s well, both the details of the mixing process

and the exact statistical properties of the original input variables s being unknown,

which explains the usage of the adjective “blind”. This is shown in Fig. 5.2.

5.2 General Mixing Process

Not surprisingly, the mixing process determines how difficult the estimation of

the original variables s from the observable random variables x will really be.

In particular, the following general properties of the mixing process have to be

considered (Haykin, 2002):

Linear vs. nonlinear mixing Each observable random variable xi at the output of

the mixer can be either a linear combination of the source variables

xi =
M∑

j=1

aijsj (5.4)

or a nonlinear function of the source variables. In the latter case, xi might
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5 Introduction to Blind Source Separation and Independent Component Analysis

be a nonlinear function of a linear combination of the source variables

xi = g

(
M∑

j=1

aijsj

)

, (5.5)

or even an arbitrary nonlinear function of some or all source variables

xi = g (s1, . . . , sM) , (5.6)

with g(·) a nonlinear scalar function (Hyvärinen et al., 2001).

Time-varying vs. fixed mixing The mixing is referred to as time-varying if its

properties change with time. In other words, the observable random variables

are produced in a nonstationary mixing environment.

Nonconvolutive vs. convolutive mixer A convolutive mixer is a mixer possess-

ing memory, i. e. the output variables viewed as observations of a stochastic

process (Papoulis, 1991, Hyvärinen et al., 2001) are a function of the input

variables at different times. On the other hand, the much simpler memory-

less, nonconvolutive case produces instantaneous mixtures depending on the

current values only.

Noiseless environment vs. presence of noise Here, the noise can consist of noise

as input to the mixer, or it can be introduced inside the mixing process.

Number of mixtures vs. number of sources Depending on the method used for

solving the blind source separation problem, the relation between the num-

ber of observable random variables and the number of sources determines

the number of estimates that can be inferred from the observable random

variables.

5.3 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical technique, perhaps the

most widely used, for solving the blind source separation problem (Hyvärinen

et al., 2001). In this section, we present the basic Independent Component Analysis

model and show under which conditions its parameters can be estimated.
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5.3 Independent Component Analysis

5.3.1 The Mixing Process

The generative model used in Independent Component Analysis assumes a mixing

process of the very simplest form (cf. Section 5.2). In particular, the mixing is

(Hyvärinen et al., 2001)

• linear,

• fixed, i. e. time-invariant,

• memoryless, and

• free of known noise sources.

Consequently, the mixing process can be written in matrix notation as

x = As, (5.7)

where the matrix A is called the mixing matrix. Note that in Independent Com-

ponent Analysis, the entries of the mixing matrix are real-valued coefficients aij.

5.3.2 The Unmixing Process

On the assumption that the mixing matrix A is nonsingular, the original indepen-

dent components s could be recovered from the observable random variables x by

matrix inversion—if the mixing matrix A were known. With Eq. (5.7), we get

s = Bx = BA
︸︷︷︸

!
=I

s = s, (5.8)

when the unmixing matrix B equals the inverse of the mixing matrix, i. e.

B = A−1. (5.9)

As a consequence, even if the true mixing matrix A is unknown in practice, esti-

mates of the independent components can be obtained as linear combinations of

the observations x. Hence, the task of Independent Component Analysis can be

interpreted as the design of methods or algorithms that are able to determine an

unmixing matrix B such that the estimates

y = Bx (5.10a)
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5 Introduction to Blind Source Separation and Independent Component Analysis

or, equivalently

yi = bT
i x, i = 1, . . . , N, (5.10b)

approximate the unknown sources as close as possible (Hyvärinen et al., 2001).

5.3.3 Conditions in Independent Component Analysis

For the Independent Component Analysis model to be identifiable, three assump-

tions must be met (Hyvärinen et al., 2001):

• Most importantly, the unknown sources sj have to be mutually statistically

independent (cf. Section 1.3.2), which explains the name “Independent Com-

ponent Analysis”. In this context, the sources sj are also called independent

components.

• At most one independent component is allowed to have a Gaussian p. d. f.

• The number of sources M should equal the number of observations N .

5.3.4 Ambiguities in the Independent Component Analysis

Model Estimation

The following ambiguities cannot be eliminated by any method for solving the

Independent Component Analysis model (Hyvärinen et al., 2001):

• The true variance of the independent components cannot be determined. To

explain, we can rewrite the mixing in Eq. (5.7) in the form

x = As

=
N∑

j=1

ajsj, (5.11)

where aj denotes the jth column of the mixing matrix A. Since both the

coefficients aj of the mixing matrix and the independent components sj are

unknown, we can transform Eq. (5.11)

=
N∑

j=1

1

χj

aj

︸ ︷︷ ︸

āj

χjsj
︸︷︷︸

s̄j

, where χj 6= 0 (5.12)
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so as to obtain new mixing coefficients āj with corresponding new indepen-

dent components s̄j

=
N∑

j=1

āj s̄j. (5.13)

• The order of the estimated independent components is unspecified. Formally,

introducing a permutation matrix P and its inverse into the mixing process

in Eq. (5.7)

x = As

= AP−1
︸ ︷︷ ︸

Ā

Ps
︸︷︷︸

s̄

, (5.14)

we get the equivalent mixing model

= Ās̄. (5.15)

To conclude, when rating the performance of any method for solving the Inde-

pendent Components Analysis model, we cannot expect the estimated unmixing

matrix B to match the mixing matrix A exactly.1 In other words, the matrix

product of the unmixing matrix and the mixing matrix will not generally equal

the identity matrix as it should by Eq. (5.8). Rather, the result will ideally produce

a matrix that has only one nonzero element per row and column.

Since the true variance of the independent components sj cannot be determined

anyway, we can just fix them to unity, i. e.

σ2
sj

!
= 1. (5.16a)

As a consequence, the variance of their estimates yi is unity as well

σ2
yi

!
= 1. (5.16b)

Note that this still leaves the uncertainty about the sign, which is irrelevant in

most applications, though.

1Note that in computer experiments, we obviously know the mixing matrix.
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The estimate yi is computed as a linear combination of the original independent

components sj

y = Bx

= BA
︸︷︷︸

Q

s (5.17)

yi = qT
i s (5.18)

with the coefficients compiled in the vector qi. Since the random variables sj are

statistically independent, with Eq. (5.16a) we get for the variance of the estimate

yi

σ2
yi

= q2
i1σ

2
s1

+ · · · + q2
inσ

2
sn

(5.19a)

= q2
i1 + · · · + q2

in (5.19b)

= ‖qi‖2. (5.19c)

Finally, it follows from Eq. (5.16b) and Eq. (5.19c) that (Hyvärinen et al., 2001)

‖qi‖2 !
= 1. (5.20)

5.3.5 Sphering Transformation

The linear transformation of the mixtures x given by

z = V x (5.21)

is called a sphering (or, whitening) transformation if the components of the ran-

dom vector z are mutually uncorrelated (cf. Section 1.3.1) and have unit variance

(Hyvärinen et al., 2001). Here, the matrix V is called the sphering (or, whitening)

matrix. In other words, the correlation matrix Cz of the random vector z equals

the identity matrix if z is sphered

E
{
zzT

}
= I. (5.22)

One can say that sphering removes the effects of first- and second-order statistics

(Hyvärinen et al., 2001).
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5.3.5.1 Sphering as a Preprocessing Step in ICA

For the sphered vector z

z = V x

= VAs, (5.23)

the Independent Component Analysis model still holds, albeit with a different

mixing matrix given by VA. Hence, Independent Component Analysis can be

performed on the sphered vector z just as well.

The sphering transformation is treated in this chapter not because is actually

solves the problem of estimating the Independent Component Analysis model, but

because it makes it a lot easier.

More specifically, using a sphering transformation as a preprocessing step in

Independent Component Analysis significantly reduces the degrees of freedom of

the estimation problem (Hyvärinen et al., 2001) because after the sphering trans-

formation in Eq. (5.21), the unmixing matrix W , which gives the estimates of the

independent components in the end

y = Wz, (5.24)

has to be orthogonal. To see the reason for this, note that from Eq. (5.23) and

the assumption that the independent components sj are statistically independent

and have unit variance it follows that

E
{
zzT

}
= E

{

(VA) ssT (VA)T
}

= (VA) E
{
ssT

}

︸ ︷︷ ︸

=I

(VA)T
. (5.25)

Combining Eq. (5.25) with Eq. (5.22), we get

(VA) (VA)T = I, (5.26)

which shows that after the sphering transformation the mixing matrix VA is indeed

orthogonal.

Furthermore, since the unmixing matrix W ideally corresponds to the inverse

of the mixing matrix VA, we derive from Eq. (5.26) that for sphered data the

unmixing matrix W has to be orthogonal as well.

As pointed out in Hyvärinen et al. (2001), an orthogonal N -by-N matrix has

55



5 Introduction to Blind Source Separation and Independent Component Analysis

just

N (N − 1)

2
(5.27)

degrees of freedom compared to the N 2 degrees of an arbitrary matrix of the same

size. Note that in the twodimensional case (N = 2), an orthogonal matrix can be

described by just a single parameter.

Geometrically, orthogonal matrices describe coordinate transformations preserv-

ing angles and distances, which corresponds to a rotation of the coordinate system

in the multidimensional space.

5.3.5.2 Sphering Using Eigenvalue Decomposition

A sphering matrix V can always be found, e. g. from the well-known eigenvalue

decomposition of the covariance matrix Cx of the zero-mean random vector x

Cx = EDET, (5.28)

where the orthogonal matrix E contains on its columns the unit-norm eigenvectors

of the covariance matrix Cx and the matrix D is a diagonal matrix whose entries

are the corresponding eigenvalues, sorted in order of descending variances λi

D =










λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0

0 · · · 0 λN










, λ1 > λ2 > · · · > λN . (5.29)

Then, as can easily be verified, a suitable sphering matrix V is given by

V = ED-1/2ET, (5.30)

where

D-1/2 =










1√
λ1

0 · · · 0

0 1√
λ2

. . .
...

...
. . . . . . 0

0 · · · 0 1√
λN










. (5.31)

Online sphering algorithms that avoid the direct eigenvalue decomposition of

the correlation matrix are mentioned in Hyvärinen et al. (2001).

56



5.3 Independent Component Analysis

5.3.6 Constraint on Unmixing Matrix for Sphered Data

For a sphered random vector z

z = V x

= VAs, (5.32)

where V is the matrix of the sphering transformation, we have for the estimate of

the independent component

yi = wT
i z = wT

i (VA)
︸ ︷︷ ︸

qT
i

s, (5.33)

where the vector qi is given by

qi = (VA)T
wi. (5.34)

Substituting Eq. (5.34) in Eq. (5.20) yields

‖qi‖2 = qi
Tqi

=
[

wT
i (VA)

] [

(VA)T
wi

]

= wT
i wi, (5.35)

where we have used the fact that after the sphering transformation, the mixing

matrix VA is orthogonal (cf. Section 5.3.5.1), i. e.

(VA)T = (VA)-1
. (5.36)

Equating Eq. (5.35) with Eq. (5.20), we see that for sphered data, the constraint

in Eq. (5.20) can equivalently be expressed in the much more useful form

‖wi‖2 !
= 1. (5.37)

In a word, we require that the norm of the vector wi be unity (Hyvärinen et al.,

2001).

5.3.7 Applications of ICA

It is of great interest to inspect for which classes of real-world signals the Indepen-

dent Component Analysis model is valid in practice.
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In this context, the most critical of the assumptions we made in Section 5.3.3 is

the one requiring that the mixing is instantaneous. Actually, this requirement is

approximately satisfied by electromagnetic signals that are allowed to propagate

only over very short distances prior to being recorded as the mixtures x. On

the other hand, sound propagates so slowly that—depending on the sampling

frequency—small differences in the distances between the sources and the recording

devices cause considerable time delays, thus making it impossible to apply the

instantaneous mixing model. In this case, the sensors generally pick up convolved

mixtures of the source signals.

M1M2 0

�

s1

�

s2

Figure 5.3: Two sources s1 and s2 are recorded by two cardioid microphones M1

and M2 positioned at 0. Note that the distances between the micro-
phones and the two sources are approximately equal. In the cardioid-
shaped curves, the distance from the origin 0 is a measure of the sen-
sitivity of the microphones. (Based on Dickreiter, 1997.)

Nevertheless, under certain circumstances, there is a minor chance of succeeding

in performing blind source separation on a two-channel stereo recording. To be

precise, consider a high-quality record made using a coincident recording technique,

where two artists s1 and s2 are geometrically arranged roughly on an arc not far

away from the microphones, such that the diffuse sound field does not dominate,

e. g. in the hatched area in Fig. 5.3 (Dickreiter, 1997). Then, the assumptions

of the Independent Component Analysis model seem to be met quite well and

the algorithms for Independent Component Analysis might lead to a satisfactory

source separation even for real-world audio signals in a setup like the one described.

According to Hyvärinen et al. (2001), Independent Component Analysis has

successfully been used in applications in the field of electroencephalography (EEG)

and magnetoencephalography (MEG). Here, the sensors pick up electromagnetic
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fields of signals emerging from neural currents in the brain, a process which can

be modeled as an instantaneous mixing.

Moreover, in order to extract characteristic feature of signals, Independent Com-

ponent Analysis can be used to design statistical generative models of observed

data. This leads to a data representation that might be applicable in data com-

pression, denoising, or pattern recognition, e. g. in computer vision (Hyvärinen

et al., 2001).

Further fields of application include telecommunications (Hyvärinen et al., 2001)

and financial market data analysis (Haykin, 2002, Hyvärinen et al., 2001).

5.3.8 Approaches to ICA Model Estimation

There exists a multitude of different approaches to the estimation of the Inde-

pendent Component Analysis model, some of which will be covered in the next

chapters. More specifically, we will develop algorithms based on

• maximization of non-Gaussianity,

• maximum likelihood estimation,

• minimization of mutual information, and

• tensorial methods.
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6 Maximization of Non-Gaussianity

In this chapter, we describe a conceptually simple approach to estimating the

Independent Component Analysis model parameters based on maximization of

non-Gaussianity. First, the approach is intuitively justified by means of the central

limit theorem. Then, we treat in detail two measures of non-Gaussianity and

develop several algorithms for maximizing them.

Unless stated otherwise, our discussion follows the one in Hyvärinen et al. (2001).

6.1 Justification of Maximization of Non-Gaussianity

To show why it is possible to estimate the Independent Component Analysis model

parameters through an optimization problem involving as a cost function a mea-

sure of non-Gaussianity, recall the central limit theorem, which we reviewed in

Section 1.4. To repeat, the probability density function of a sum of mutually

statistically independent random variables tends toward a p. d. f. with a Gaussian

distribution. Now, according to the Independent Component Analysis model, the

estimates of the independent components yi can be written as a weighted sum of

the (unknown) random variables sj. In matrix notation, we have

y = Bx (6.1a)

= BA
︸︷︷︸

Q

s

= Qs (6.1b)

with a matrix Q of suitable size. For a single estimate yi, it follows from Eq. (6.1b)

that

yi =
∑

j

qijsj, (6.1c)

where the weights are given by the coefficients qij. We see from Eq. (6.1c) that

since by definition the random variables sj are mutually statistically independent,

60



6.1 Justification of Maximization of Non-Gaussianity

the central limit theorem does indeed apply to the estimates yi.

Therefore, one can assume that the distribution of the estimate yi is closer to

a Gaussian distribution when the estimate yi is the sum of several independent

components sj. On the other hand, yi must be least Gaussian if it is the “sum” a

of just single independent non-Gaussian random variable sj. Then, in accordance

with the ambiguities that remain in the model estimation (Section 5.3.4), only

one qij in Eq. (6.1c) is nonzero and the estimate yi approximates one independent

component sj (possibly with an inverted sign)

yi = qijsj (6.2a)

= ±sj. (6.2b)

Of course, we do not have direct access to the independent components as might

seem required by Eq. (6.1c). Remember that all we have are the random variables

xi. But, as is evident from Eq. (6.1a), the estimate yi is also a linear combination

of the observable random variables xi, with the weights given by the coefficients

bij this time

yi =
∑

j

bijxj (6.3a)

= bT
i x. (6.3b)

To conclude, a valid estimate of an independent component can be found by

tuning the weights of the vector bi in Eq. (6.3) so that the departure of the result-

ing distribution of the random variable yi = bT
i x from the Gaussian distribution

is maximized. In other words, in the approach discussed in this chapter, we try

to maximize the non-Gaussianity of the estimate yi, where—as always in Inde-

pendent Component Analysis—we fix its variance to unity for reasons explained

in Section 5.3.6. For mathematical convenience, let us deal with a sphered input

vector z in the rest of this chapter. Note that in this case, the estimate yi is

likewise obtained by

yi = wT
i z (6.4)

under the constraint that the norm of wi be unity.

In the next two chapters, we show how both the kurtosis of yi and the negentropy

of yi can be used as cost functions measuring non-Gaussianity. For each of the two

measures, we solve the optimization problem by methods explained in Chapter 4
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6 Maximization of Non-Gaussianity

so as to derive algorithms for estimating the Independent Component Analysis

model parameters.

Firstly, we limit our discussion to the estimation of only one independent com-

ponent yi. At the end of this chapter, we finally show how to obtain the complete

unmixing matrix.

6.2 Measuring Non-Gaussianity by Kurtosis

In Section 1.5.2.1, we introduced the kurtosis of a random variable yi as its forth-

order cumulant. For a zero-mean random variable, it is given by

kurt (yi) = E
{
y4

i

}
− 3

(
E
{
y2

i

})2
. (6.5a)

On the assumption that the variance of the estimate of the independent component

is unity, the definition in Eq. (6.5a) can be simplified to

kurt (yi) = E
{
y4

i

}
− 3. (6.5b)

The suitability of kurtosis as a measure of non-Gaussianity was demonstrated

in Section 1.6.2, where we found that kurtosis is necessarily zero for a Gaussian-

distributed random variable

kurt (yGauss) = 0 (6.6)

and nonzero for most other random variables. More precisely, kurtosis is positive

for super-Gaussian random variables and negative for sub-Gaussian ones, as illus-

trated in Fig. 1.2. Therefore, we choose the absolute value of the kurtosis1 of the

estimate of the independent component yi as the cost function in maximization of

non-Gaussianity

Ikurt (wi) = |kurt (yi)| (6.7)

=
∣
∣kurt

(
wT

i z
)∣
∣ . (6.8)

An advantage of measuring non-Gaussianity by the absolute value of kurtosis

is obviously its computational simplicity. In particular, it can be estimated easily

from a finite number of observations of a random variable as discussed in Sec-

tion 1.2.2. On the other hand, this kind of sample estimate tends to be quite

1Obviously, we can take the square just as well.
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6.2 Measuring Non-Gaussianity by Kurtosis

sensitive to outliers due to the forth power in its definition in Eq. (6.5a). In a

word, it lacks robustness.

Computer Experiment 6.1 (Maximization of Non-Gaussianity)

Fig. 6.1 and Fig. 6.2 summarize the outcomes of a computer experiment on the

maximization of non-Gaussianity.
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z2

(a)

w′
1

1 2−1−2

1√
2π

1
2
√

3
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py′
1
(y′1)

(b)

w′′
1

1 2−1−2

1√
2π

y′′10

py′′
1
(y′′1)

(c)

Figure 6.1: Histograms of the estimate of one independent component for two dif-
ferent vectors w′

1 and w′′
1. (a) Samples of a sphered mixture. (b)

Histogram of estimate of the independent component y′1 = w′
1
Tz. (c)

Histogram of estimate of the independent component y′′1 = w′′
1
Tz.

In Fig. 6.1(a), you see a number of samples drawn from a sphered mixture

z =
[

z1 z2

]T

of two independent components with uniform p. d. f.’s of zero mean

and unit variance. As we know, the mixing matrix and with it the unmixing matrix

are orthogonal in this case.

Let ψ denote the angle between the vector w1 and the positive x-axis. In this

experiment, two specific values of ψ were considered, leading to the two vectors

w′
1 and w′′

1, respectively. Note that w′
1 corresponds exactly to one of the vectors

solving the Independent Component Analysis model. Accordingly, for the estimate

of the independent component y′1 resulting from this vector, the histogram in

Fig. 6.1(b) reveals the desired uniform structure.
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6 Maximization of Non-Gaussianity

Conversely, this is not true for the second vector w′′
1. More specifically, from

the histogram of the estimate of the independent component y′′1 in Fig. 6.1(c) we

can see that the shape of its distribution is almost triangular. Consequently, the

similarity to the standardized Gaussian distribution (dotted line) is much more

distinct.

45 90 135 180 225 270 315 360

−0.7
−0.9
−1.1
−1.3

ψ

kurt (y1)

Figure 6.2: Kurtosis of the estimate of one independent component y1 as a function
of the angle ψ.

Similar insights can be gained from the inspection of Fig. 6.2. There, the kurtosis

of the estimate of the independent component

y1 = wT
1 z =

[

cosψ sinψ
]
[

z1

z2

]

(6.9)

is plotted as a function of the angle ψ (in degrees). Kurtosis is always negative

according to the fact that the independent components are sub-Gaussian. Hence,

the maxima of the absolute value of kurtosis are obtained at the minima of kurtosis.

For your convenience, the two minima whose values of ψ give the independent

component in Eq. (6.9) are marked with dotted lines. Note that there are four

local minima as was to be expected due to the sign ambiguity in the Independent

Component Analysis model estimation. “

6.2.1 Gradient Algorithms

We can optimize the cost function Ikurt (wi) in Eq. (6.7) making use of the method

of steepest descent, which we discussed in Section 4.5. Here, the gradient of the

cost function can easily be computed according to the rules mentioned in the

appendix of Chapter 4. In particular, we obtain

∂Ikurt (wi)

∂wi

= 4 sign
(
kurt

(
wT

i z
))



E
{

z
(
wT

i z
)3
}

− 3wi‖wi‖
︸ ︷︷ ︸

=1

2



 , (6.10)
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6.2 Measuring Non-Gaussianity by Kurtosis

where in practice, the expected values—including the kurtosis of the estimate of

the independent component—have to be estimated from the available samples as

is typical of the batch algorithms treated in Section 1.2.2. Clearly, prior knowledge

of whether the independent component we want to estimate is super-Gaussian or

sub-Gaussian can be used right off by choosing the correct sign inside the signum

function in Eq. (6.10).

Additionally, we have to take into account the constraint in Eq. (5.37). This

can be done most simply by orthogonally projecting the updated vector on the

constraint set after every iteration step (Section 4.6.2).

Consequently, an estimate yi can be found by iteratively performing the following

calculations, where the gradient of the cost function is given by Eq. (6.10):

w′
i[n] = wi[n] + α[n]

∂Ikurt (wi)

∂wi

∣
∣
∣
∣
∣
wi=wi[n]

(6.11a)

wi[n+ 1] =
w′

i[n]

‖w′
i[n]‖ . (6.11b)

Note that here we use the method of steepest descent to maximize the cost function,

hence the plus sign in front of the gradient in Eq. (6.11a).

A stochastic gradient algorithm (Section 4.5.2.2) is obtained from Eq. (6.11a)

and Eq. (6.10) by omitting the expectation operator inside the parentheses in

Eq. (6.10). Then it is possible to use each observation z[n] as soon as it becomes

available. On the other hand, unless the kurtosis of the estimate of the independent

component in Eq. (6.10) is known a priori, it still has to be estimated correctly.

For instance, we can perform an online estimation according to the formula

γi[n+ 1] = γi[n] + αγi
[n]
{[(

wT
i [n]z[n]

)4 − 3
]

− γi[n]
}

, (6.12)

where γi[n] denotes the estimate of the kurtosis of yi in iteration step n and αγi
[n]

is the sequence of the step-size parameter.

6.2.2 Fixed-Point Algorithm

From Example 4.4 we know that a vector wi solving the optimization problem

of maximizing a cost function I (wi) under the constraint that the norm of wi

be unity always points in the same direction as the gradient of the cost function.
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6 Maximization of Non-Gaussianity

Adapted to the problem considered here, Eq. (4.37) reads

∂Ikurt (wi)

∂wi

+ 2λwi = 0, (6.13)

where the gradient is given by Eq. (6.10). To be able to solve Eq. (6.13) by a

fixed-point iteration (Section 4.3), we rewrite it in the form

∂Ikurt (wi)

∂wi

= −2λwi. (6.14)

Due to the mandatory orthogonal projection of the solution wi on the constraint

set, the expression −2λ on the right-hand side of Eq. (6.14) has no effect what-

soever and can therefore be omitted. This finally leads to the so-called FastICA-

algorithm for maximization of non-Gaussianity measured by the absolute value of

kurtosis

w′
i[n] = E

{

z
(
wT

i [n]z
)3
}

− 3wi[n] (6.15)

wi[n+ 1] =
w′

i[n]

‖w′
i[n]‖ . (6.16)

6.2.3 Comparison between Gradient-Based Algorithms and the

Fixed-Point Algorithm

One remarkable virtue of the FastICA algorithm over the methods of steepest

descent is clear from Eq. (6.15). More precisely, note that the FastICA algorithm

does not have a step-size parameter as the gradient-based methods do. This results

in increased reliability and ease of use. In addition, one can show that the FastICA

algorithm generally converges of second order, which means very fast convergence

(cf. Section 4.2.3). For independent components with a symmetric distribution,

convergence is even cubic.

Conversely, the convergence speed of gradient-based methods is only linear.

Furthermore, convergence is significantly influenced by the choice of a suitable

learning-rate sequence. On the other hand, especially the stochastic gradient al-

gorithms allow fast adaptation in nonstationary environments.

6.3 Measuring Non-Gaussianity by Negentropy

As a second possibility of measuring non-Gaussianity, let us consider negentropy,

which we treated in detail in Section 3.3. We saw there that the negentropy of
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6.3 Measuring Non-Gaussianity by Negentropy

a random variable yi is zero if and only if the random variable has a Gaussian

distribution

N (yi) = 0 ⇐⇒ yi = yGauss, (6.17)

while in all other cases, the negentropy is positive due to the maximum entropy

property of Gaussian-distributed random variables (cf. Section 3.1.4). (In contrast,

kurtosis is not necessarily nonzero for random variables with a non-Gaussian dis-

tribution.)

However, we need complete knowledge of the p. d. f. of the random variable under

consideration in order to be able to compute its negentropy exactly. In this sense,

negentropy is computationally much more demanding than kurtosis. Fortunately,

there exist several approximations of negentropy that are helpful in Independent

Component Analysis by maximization of non-Gaussianity. In particular, two dif-

ferent kinds of negentropy approximation were mentioned in Section 3.3.2:

1. approximation of negentropy by higher-order cumulants

2. approximation of negentropy by nonpolynomial functions

We have already shown in Section 3.3.2.1 that for symmetric distributions, which

are often encountered in practice, the first kind of approximation actually leads to

an approximation of negentropy proportional to the square of kurtosis. Since max-

imization of the square of an expression leads to the same extrema as maximization

of its absolute value, from this measure of non-Gaussianity we get conceptually

the algorithms from Section 6.2.

However, a much more appealing measure of non-Gaussianity can be obtained

from the approximation of negentropy by nonpolynomial functions. In the simplest

case, i. e. if we decide to take just one nonlinear function G(·), the negentropy

N (yi) of a random variable yi can be approximated by (cf. Section 3.3.2.2)

N (yi) = k1

(
E{G (yi)} − E{G(ν)}

)2
, (6.18)

where ν is a standardized Gaussian-distributed random variable. Since the positive

constant k1 is just a scaling factor, it can be omitted in optimization problems. The

approximation of negentropy in Eq. (6.18) is designed so that it is necessarily zero

for a Gaussian-distributed random variable and positive otherwise. Accordingly,

we can use it as a cost function for maximization of non-Gaussianity

IN (wi) =
(
E
{
G
(
wT

i z
)}

− E{G(ν)}
)2
. (6.19)
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6 Maximization of Non-Gaussianity

In order to obtain measures of non-Gaussianity that are more robust than kurtosis,

we can use the nonlinear functions proposed in Section 3.3.2.2, reproduced here

for convenience

G1(yi) =
1

a1

ln cosh(a1yi), 1 ≤ a1 ≤ 2, (6.20a)

G2(yi) = −e−
y2
i
2 (6.20b)

G3(yi) =
1

4
y4

i . (6.20c)

As mentioned in Hyvärinen (1999), G1(·) is a good general-purpose nonlinear func-

tion for the optimization problem considered in this section. On the other hand,

G2(·) might be better for highly super-Gaussian independent components, or when

robustness is very important.

Interestingly enough, when we use the function in Eq. (6.20c), the resulting

cost function IN (wi) in Eq. (6.19) resembles the approximation of negentropy by

cumulants.

Measuring non-Gaussianity by the cost function in Eq. (6.19) using nonlinear

functions like the first and the second in Eq. (6.20) provides estimates of indepen-

dent components that are considerably more robust than those obtained by the

maximization of kurtosis without being computationally more demanding.

6.3.1 Gradient Algorithms

The gradient of the cost function IN (wi) in Eq. (6.19) with respect to the weight

vector wi is given by

∂IN (wi)

∂wi

= ρ E
{
zg
(
wT

i z
)}
, ρ = E

{
G
(
wT

i z
)}

− E{G (ν)} , (6.21)

where the function g(·) is the derivative of the nonpolynomial function G(·) used

in the approximation of negentropy in Eq. (6.19)

g(yi) =
dG(yi)

dyi

. (6.22)

In Fig. 6.3, the derivatives gi(yi) corresponding to the functions in Eq. (6.20) are
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1 2 3−1−2−3

1

2

−1

−2

tanh y

ye−
y2

2

y3

y0

Figure 6.3: Derivatives of two functions suitable for approximating negentropy by
one nonlinear function. For reference, the derivative of the forth power
of x corresponding to the kurtosis measure is also plotted.

plotted. They read

g1(yi) = tanh(a1yi), 1 ≤ a1 ≤ 2 (6.23a)

g2(yi) = yie
− y2

i
2 (6.23b)

g3(yi) = y3
i . (6.23c)

Actually, as far as the stability of the resulting algorithm is concerned, the choice

of the function G(·) is not critical as long as the input data are sphered and the

solution vectors wi are constrained to unit norm. Thus, the method based on the

cost function in Eq. (6.19) is rather general and allows one to tailor algorithms

for Independent Component Analysis maximizing non-Gaussianity to the special

requirements of the task at hand. More information on this issue can be found in

Hyvärinen and Oja (1998).

Note that the term E{G(ν)} involved in the computation of ρ in Eq. (6.21)

can be computed exactly from the definition of the mathematical expectation in

Eq. (1.10), whereas the other expectations have to be estimated from the available

data samples.

Taking into account the constraint in Eq. (5.37), we obtain an estimate yi by
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iterating

w′
i[n] = wi[n] + α[n]

∂IN (wi)

∂wi

∣
∣
∣
∣
∣
wi=wi[n]

(6.24a)

wi[n+ 1] =
w′

i[n]

‖w′
i[n]‖ , (6.24b)

where the gradient is given by Eq. (6.21).

Again, we can replace the expectation E
{
zg
(
wT

i z
)}

in Eq. (6.21) by its current

value z[n]g
(
wT

i [n]z[n]
)

in order to obtain a stochastic gradient algorithm. On the

other hand, the parameter ρ still has to be estimated online, e. g. along the lines

of the estimate of kurtosis in Eq. (6.12).

6.3.2 Fixed-Point Algorithm

An algorithm having as favorable properties as the fixed-point iteration in Sec-

tion 6.2.2 can be designed for negentropy as a measure of non-Gaussianity as well.

Details on the derivation of the algorithm can be found in the reference men-

tioned at the beginning of this chapter. In principle, the constrained optimization

problem of maximizing the non-Gaussianity measured by an approximation of ne-

gentropy like the one in Eq. (6.18) is solved by the method of Lagrange multipliers

(cf. Section 4.6.1). The corresponding adjoint equation is in turn solved by New-

ton’s method (cf. Section 4.4), where the particular structure of the sphered input

data is exploited in order to avoid the compulsory matrix inversion of the Jaco-

bian of the adjoint equation. The resulting FastICA algorithm has the form of

a fixed-point iteration (Section 4.3) and has to be followed by projection on the

constraint set

w′
i[n] = E

{
zg
(
wT

i [n]z
)}

− E
{
g′
(
wT

i [n]z
)}

wi[n] (6.25)

wi[n+ 1] =
w′

i[n]

‖w′
i[n]‖ . (6.26)

Here, g′(·) denotes the derivative of the learning function g(·). For the functions

in Eq. (6.23a), we have

g′1(y) = a1

(
1 − tanh2(a1y)

)
, 1 ≤ a1 ≤ 2, (6.27a)

g′2(y) =
(
1 − y2

)
e−

y2

2 (6.27b)

g′3(y) = 3y2. (6.27c)
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6.3.3 Comparison between Gradient-Based Algorithms and the

Fixed-Point Algorithm

As for the advantages and drawbacks of the algorithms based on the steepest-

descent method and the FastICA algorithm measuring non-Gaussianity by an ap-

proximation of negentropy, the same can be said as in Section 6.2.3. In addition,

note that the FastICA algorithm based on the approximation of negentropy is even

better than the FastICA algorithm maximizing kurtosis because of the desirable

statistical properties of negentropy or its approximation.

6.4 Estimating the Complete Unmixing Matrix

So far, we treated the estimation of only a single independent component yi, on the

assumption that the input data have been sphered in a preprocessing step. The

complete set of estimates of the independent components can simply be obtained

as described in the following.

First, recall that the independent components yi are by definition mutually

statistically independent. As pointed out in Section 1.3.2, this implies their un-

correlatedness

E{yiyj} = E{yi} E{yj} (6.28)

for every two different indices i 6= j. Moreover, for zero-mean random variables,

Eq. (6.28) reduces to

E{yiyj} = 0. (6.29)

Considering that the input data z are sphered, i. e.

E
{
zzT

}
= I, (6.30)

where I denotes the identity matrix, we get from Eq. (6.29)

E{yiyj} = E
{(

wT
i z
) (

wT
j z
)}

= E
{(

wT
i z
) (

zTwj

)}

= wT
i E
{
zzT

}

︸ ︷︷ ︸

=I

wj

= wT
i wj = 0. (6.31)
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In a word, the vectors wi have to be mutually orthogonal. Consequently, we run

an algorithm of our choice to estimate the independent components as we have

done in this chapter and prevent the vectors wi from converging onto the same

extrema by means of orthogonalization. More precisely, two different orthogonal-

ization schemes are usually used in this context: (1) the well-known Gram-Schmidt

orthogonalization and (2) a symmetric orthogonalization. Furthermore, Hyvärinen

et al. (2001) present algorithms for performing online orthogonalization.

6.4.1 Gram-Schmidt Orthogonalization

The Gram-Schmidt orthogonalization allows to compute a vector w̃p that is or-

thogonal to a set of mutually orthogonal vectors w̃j, j = 1, . . . , p − 1 and an

arbitrary vector wp, where the norm of each is unity

w̃p = wp −
p−1
∑

j=1

(
wT

p w̃j

)
w̃j, p = 2, . . . , N. (6.32)

In our optimization problem, we successively compute vectors wp that are then

orthogonalized with respect to the vectors previously found by Eq. (6.32) as a last

step in the update procedure. This will of course be followed by normalizing the

new vector w̃p by its norm in order to satisfy the constraint in Eq. (5.37).

Let us compile the set of orthogonal vectors w̃i, i = 1, . . . , N in a matrix

W̃ =







w̃T
1
...

w̃T
N






. (6.33)

Then, the complete set of independent component estimates y =
[

y1 · · · yN

]T

can be obtained by

y = W̃z. (6.34)

From a numerical point of view, we have to note that estimation errors made

during the computations of the first vectors accumulate in successive vectors. In

addition, it is not possible to compute the estimates of several independent compo-

nents in parallel. The symmetric orthogonalization discussed next does not have

these drawbacks.
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6.4 Estimating the Complete Unmixing Matrix

6.4.2 Symmetric Orthogonalization by Eigenvalue

Decomposition

As an alternative to the Gram-Schmidt orthogonalization, we can first estimate

the vectors wi separately by a suitable algorithm. From the matrix

W =







wT
1
...

wT
N






, (6.35)

an orthogonal matrix W̃ can be obtained by the formula

W̃ =
(
WW T

)−1/2
W . (6.36)

Here, the so-called inverse square root
(
WW T

)−1/2
is computed from the eigen-

value decomposition of the matrix WW T

WW T = E diag (λ1, . . . , λN) ET (6.37a)

= EDET (6.37b)

according to

(
WW T

)−1/2
= E diag

(

λ
−1/2
1 , . . . , λ

−1/2
N

)

ET (6.38a)

= ED−1/2ET. (6.38b)

Using Eq. (6.37), Eq. (6.38), and the fact that the matrices E are orthogonal,

we can easily show that the matrix W̃ is indeed orthogonal. In particular, we have

W̃W̃
T

=
[(

WW T
)−1/2

W
] [(

WW T
)−1/2

W
]T

=
[

ED−1/2ETW
] [

ED−1/2ETW
]T

= ED−1/2ETWW TED−1/2ET

= ED−1/2 ETE
︸ ︷︷ ︸

=I

D ETE
︸ ︷︷ ︸

=I

D−1/2ET

= E D−1/2DD−1/2
︸ ︷︷ ︸

=I

ET

= EET

= I.
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6 Maximization of Non-Gaussianity

Here again, the independent components are obtained like in Eq. (6.34).

6.5 Summary and Outlook

In this chapter, we showed that the Independent Component Analysis model can

be solved by maximizing the non-Gaussianity of the estimates of the independent

components. For measuring non-Gaussianity, a simple approximation of negen-

tropy is to be preferred to the classical measure of kurtosis from a statistical point

of view. Moreover, we developed several algorithms based on the method of steep-

est descent and on the fixed-point iteration.

Remarkably, the algorithms introduced in this chapter allow to estimate only a

part of the independent components as a special feature, which is not possible for

most other algorithms (Hyvärinen and Oja, 1997).

Semi-adaptive versions, e. g. of the FastICA algorithms, can be obtained by

estimating the expectations not over the whole data set, but over blocks of samples

only. This way, even the batch algorithms allow an adaptation in a nonstationary

environment (Hyvärinen and Oja, 1997).
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7 Maximum Likelihood Estimation

A popular and efficient method for solving the Independent Component Analysis

model is based on the maximum likelihood method, which we discussed in Sec-

tion 2.2. Roughly speaking, the concept of the maximum likelihood method is to

find those parameter values that are most likely responsible for having generated

some observations. Here, the parameters are the elements of the unmixing matrix.

Among all unbiased point estimates, the one obtained from the maximum like-

lihood method is the most efficient.

7.1 Log-Likelihood Function of the ICA Model

First, let us derive the likelihood function ` (·) of the Independent Component

Analysis model as in Hyvärinen et al. (2001), where we have made some minor

corrections, though. To this end, we assume that the Independent Component

Analysis model from Eq. (5.7)

x = As (7.1)

possesses the unique solution

s = A−1x

= Bx =







bT
1
...

bT
N







x, (7.2)

75
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where B = A−1. Then, proceeding along the lines of Example 1.2, we get from

Eq. (1.9) for the p. d. f. px(x) of the observable random variables x

px(x) =
1

|det A|ps(s)

= |det B| ps(s)

= |det B|
N∏

i=1

psi
(si)

= |det B|
N∏

i=1

psi

(
bT

i x
)
. (7.3)

Here, psi
(si) denotes the marginal p. d. f. of the independent component si. Note

that in the last steps, we considered the statistical independence of the independent

components si and used the identity (Bartsch, 1999)

1

det A
= det A−1 = det B. (7.4)

Finally, the likelihood function ` (B) for K observations x[k] of the random

vector x is given by

` (B) =
K∏

k=1

|det B|
N∏

i=1

psi

(
bT

i x[k]
)

(7.5)

= |det B|K
K∏

k=1

N∏

i=1

psi

(
bT

i x[k]
)

(7.6)

and the corresponding log-likelihood function L (B) by

L (B) = ln ` (B) (7.7)

= K ln |det B| +
K∑

k=1

N∑

i=1

ln psi

(
bT

i x[k]
)
. (7.8)

As suggested in Hyvärinen et al. (2001), we can take the sum over the K obser-

vations in Eq. (7.8) for a corresponding expected value—similar to Eq. (1.14)—in

order to obtain the cost function for maximum likelihood estimation

IML (B) =
1

K
L (x) (7.9)

= ln |det B| + E
{

N∑

i=1

ln psi

(
bT

i x
)

}

. (7.10)
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7.1.1 Nonparametric Density Estimation

It should be noted that the cost function IML in Eq. (7.10) depends on several

quantities:

1. the elements of the unmixing matrix B

2. the unknown p. d. f.’s of the independent components

As for the unknown p. d. f.’s, one would usually prefer a nonparametric estima-

tion. Now, such a nonparametric estimation of the p. d. f.’s of the independent

components would be statistically difficult and require a huge amount of input

data (Hyvärinen et al., 2001). Therefore, we prefer to avoid this kind of estima-

tion and try designing suitable density approximations that can be parameterized

by as few parameters as possible.

7.1.2 Binary Density Approximation for the ICA Cost Function

Fortunately, in order to be able to solve the Independent Component Analysis

model, an approximation by just two different probability density functions is

sufficient, as shown in Hyvärinen et al. (2001). More specifically, let p̃sj
(sj) denote

assumed p. d. f.’s of the independent components sj. In addition, constrain the

estimates yi = bT
i x of the independent components to be sphered (Section 5.3.5),

such that

E
{
yyT

}
= I. (7.11)

Then, the estimate obtained from optimization of the likelihood function is locally

consistent, i. e. it locally converges onto an independent component for a large

number of observations K, if the nonpolynomial moment

E
{

sjgsj
(sj) − g′sj

(sj)
}

> 0, (7.12)

is positive for all independent components sj. Here, gsj
is computed from the

assumed p. d. f. p̃sj
(sj) of the independent component sj according to

gsj
(sj) =

d

dsj

ln p̃sj
(sj) =

1

p̃sj
(sj)

dp̃sj
(sj)

dsj

, (7.13)

and g′sj
(sj) is the derivative of gsj

(sj) with respect to sj.

Hyvärinen et al. (2001) propose a set of two p. d. f.’s for one of which the nonpoly-

nomial moment in Eq. (7.12) is always positive, so that the maximum-likelihood
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7 Maximum Likelihood Estimation

estimate converges to one of the true independent components. More precisely,

consider the two log-densities

ln p̃+
sj

(sj) = $1 − 2 ln cosh sj (7.14a)

and

ln p̃−sj
(sj) = $2 −

(
s2

j

2
− ln cosh sj

)

, (7.14b)

where $1 and $2 are scaling factors that turn the functions into proper p. d. f.’s.

p̃+
sj

(sj) is the p. d. f. of a super-Gaussian random variable, whereas p̃−sj
(sj) is the

p. d. f. of a sub-Gaussian random variable. For the densities in Eq. (7.14a) and

Eq. (7.14b), the nonpolynomial moment in Eq. (7.12) is given by

2E
{
−sj tanh sj +

(
1 − tanh2 sj

)}
(7.15a)

and by

E
{
sj tanh sj −

(
1 − tanh2 sj

)}
, (7.15b)

respectively. Obviously, the signs of the nonpolynomial moments in Eq. (7.15) are

always opposite. As a consequence, only one of the p. d. f.’s used in Eq. (7.14a) and

Eq. (7.14b) gives the correct sign as required in Eq. (7.12) and can therefore be used

in the maximum likelihood estimation of the Independent Component Analysis

model instead of the true but unknown p. d. f. of the independent component.

In practice, to find out which of the two densities to take, we perform an online

computation of the nonpolynomial moments in Eq. (7.15) along the lines of the

online estimation of kurtosis in Eq. (6.12), using an estimate of the independent

component yi. We then choose the p. d. f. for which the corresponding nonpolyno-

mial moment is positive as required by Eq. (7.12).

Once a suitable p. d. f. is found, the problems associated with the nonparametric

density estimation are solved. Then, the cost function IML (B) in Eq. (7.10) is a

function of the unmixing matrix B only.

Note finally that if knowledge of the p. d. f. of the independent components

to estimate is available, it can of course be used in the log-likelihood function.

From Eq. (7.12) we conclude that the p. d. f. need not be known exactly. More

specifically, small misspecifications can be tolerated as long as the nonpolynomial

moment in Eq. (7.12) has the correct positive sign (Hyvärinen et al., 2001).
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7.2 The Bell-Sejnowski Algorithm

In this section, we solve the problem of optimizing the log-likelihood-based cost

function by the method of steepest descent. Using Eq. (4.47), we may express the

gradient of the cost function IML (B) in Eq. (7.10) as

∂IML (B)

∂B
=
(
BT
)−1

+ E
{
g (Bx) xT

}
, (7.16)

where

g (Bx) = g (y) (7.17)

=







gs1(s1)
...

gsN
(sN)







(7.18)

and the functions gsj
(sj) are determined from the estimates yi as discussed in

Section 7.1.2. Thus, if the nonpolynomial moment in Eq. (7.15a) is positive for

an independent component sj, the nonlinear function g+
sj

(sj) to be employed in

Eq. (7.17) is

g+
sj

(sj) = −2 tanh sj, (7.19a)

whereas if it is negative, the nonlinear function

g−sj
(sj) = tanh sj − sj (7.19b)

should be used instead.

(7.19c)

To summarize, we get as an iterative algorithm for maximization of the log-

likelihood function of the observations (Hyvärinen et al., 2001)

B[n+ 1] = B[n] + α[n]
∂IML (B)

∂B

∣
∣
∣
∣
∣
B=B[n]

, (7.20)

where the gradient is given by Eq. (7.16) and α[n] denotes a suitable step-size

parameter sequence. Note that according to Eq. (7.11), the estimates of the in-

dependent components should be sphered before estimating the nonpolynomial
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moment for the binary density approximation to work correctly for Independent

Component Analysis.

Once more, an online stochastic gradient algorithm commonly known as the

Bell-Sejnowski algorithm can be obtained from the update rule in Eq. (7.20) by

substituting g (B[n]x[n]) xT[n] for the expectation E
{
g (Bx) xT

}
, thus making it

possible to use every observation x[n] as soon as it becomes available (Hyvärinen

et al., 2001). This yields

B[n+ 1] = B[n] + α[n]
[(

BT[n]
)−1

+ g (B[n]x[n]) xT[n]
]

. (7.21)

7.2.1 Derivation from Infomax Principle

Actually, the Bell-Sejnowski algorithm in Eq. (7.21) was first derived not from the

maximum likelihood approach, but using the principle of information maximiza-

tion (Bell and Sejnowski, 1995).

φ1

(
bT

1 x
)

φ2

(
bT

2 x
)

...

φN

(
bT

Nx
)

x1

x2

...

xN

y1

y2

...

yN

x yφ(Bx)

Figure 7.1: Neural network structure, N → N mapping.

As an illustration of this principle, consider the network of nonlinear units de-

picted in Fig. 7.1, where each unit, which is represented by an oval node, computes

its output according to a nonlinear sigmoid function φi(·) that depends on the in-

put vector x and a vector of adjustable weights bi. Note that in general, the

network will also contain some noise sources.

Now, the principle of information maximization aims at maximizing the infor-

mation transmission from the input x to the output y of the network by adjusting

the weights B so that the mutual information I(x,y) between the inputs and the

outputs (cf. Section 3.2) is maximized. It can be shown that for the zero-noise
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7.2 The Bell-Sejnowski Algorithm

limit, maximization of the mutual information I(x,y) between the inputs and

the outputs is equivalent to maximization of the differential entropy h(y) of the

outputs alone.

From Eq. (3.6), the differential entropy h(y) of the outputs can be computed as

h(y) = h(x) + E{log |det Jφ(x)|} , (7.22)

where Jφ(x) is the Jacobian matrix (cf. Eq. (1.8)) of the vector function

φ(Bx) =







φ1 (u1)
...

φN (uN)






, ui = bT

i x. (7.23)

Since

det Jφ(x) = det







∂φ1

∂x1
· · · ∂φ1

∂xN

...
. . .

...
∂φN

∂x1
· · · ∂φN

∂xN







= det







dφ1

du1

∂u1

∂x1
· · · dφ1

du1

∂u1

∂xN

...
. . .

...
dφN

duN

∂uN

∂x1
· · · dφN

duN

∂uN

∂xN







=

(
N∏

i=1

dφi

dui

)

det







∂u1

∂x1
· · · ∂u1

∂xN

...
. . .

...
∂uN

∂x1
· · · ∂uN

∂xN







=

(
N∏

i=1

dφi

dui

)

det B, (7.24)

we get for the second term in Eq. (7.22)

E{log |det Jφ(x)|} = E
{

N∑

i=1

log
dφi

(
bT

i x
)

dui

}

+ log |det B| . (7.25)

Comparing Eq. (7.25) with Eq. (7.10) and matching the bases of the logarithms, we

see that maximization of mutual information between the inputs and the outputs

of the neural network as suggested by the principle of information maximization

is indeed equivalent to optimizing our cost function IML based on the maximum

likelihood method if the derivative of the sigmoids in the neural network equals
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the densities of the independent components

dφi

dui

= psi
. (7.26)

For a discussion of the Bell-Sejnowski algorithm in the light of neural networks,

see the excellent paper by Bell and Sejnowski (1995).

7.2.2 The Natural Gradient Algorithm

Consider the parameter space of the Independent Component Analysis model,

whose coordinates are given by the synaptic weights bij. According to Amari’s in-

formation geometry, this parameter space is not Euclidean, i. e. its basis vectors do

not form an orthonormal coordinate system. In fact, the parameter space of a neu-

ral network has a Riemannian structure. In such a space the direction of steepest

descent or steepest ascent is not given by the conventional gradient. Rather, the

so-called natural gradient should be used (Amari, 1997). Without going into detail

here, we mention that for a single-layer neural network, the natural gradient can

be obtained from the conventional gradient in the update rule by post-multiplying

it by the product of matrices

BTB. (7.27)

In the case of the update rule of the gradient algorithm in Eq. (7.20), this yields

(
∂IML (B)

∂B

)

BTB =
[(

BT
)−1

+ E
{
g (Bx) xT

}]

BTB

=
(
I + E

{
g (y) yT

})
B, (7.28)

where I denotes the identity matrix.

Note that the algorithm derived using the natural gradient avoids the matrix

inversion present in the algorithm in Eq. (7.20). As a consequence, we expect

improved stability in cases where the mixing matrix or unmixing matrix is close

to singularity (Hyvärinen et al., 2001).

Furthermore, Amari (1997) shows that an online algorithm that uses the nat-

ural gradient instead of the conventional gradient is asymptotically as efficient

(Section 2.1) as the corresponding batch algorithm, which is able to extract infor-

mation from all samples in each iteration step (cf. Section 4.5.2).
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7.3 Fixed-Point Iteration

Gradient algorithms are not the only way to maximizing the log-likelihood function

in Eq. (7.10). In fact, a faster and more reliable algorithm similar to the FastICA

algorithms in Section 6.2.2 and in Section 6.3.2 can be derived as follows.

Consider again the cost function IML in Eq. (7.10). If we constrain the estimates

of the independent components yi to be sphered according to Eq. (7.11), it can

be shown (Hyvärinen et al., 2001) that the term ln |det B| in Eq. (7.10) has to

be constant.1 What remains is a sum of N terms of the form optimized by the

fixed-point iteration in Section 6.3.2, when we set G(·) = ln psj
(sj). Accordingly,

taking into account the fact that in Chapter 6 the data we used were sphered, an

analogous derivation yields (Hyvärinen et al., 2001)

B̃[n] = B[n] + diag (ζi)
(
diag (ξi) + E

{
g (y) yT

})
B[n] (7.31a)

B[n+ 1] =
(

B̃[n]CxB̃
T
[n]
)-1/2

B̃[n], (7.31b)

where

y = Bx, ξi = −E{yig(yi)} , ζi =
1

E{yig(yi) − g′(yi)}
(7.32)

and Cx denotes the correlation matrix of the random vector x. Note that the

update rule in Eq. (7.31a) must be followed by projection on the set of sphering

matrices as in Eq. (7.31b) because we required the output y to be sphered.

The discussion of the nonlinear function g in Eq. (7.31) is deferred to the next

section.

1Taking the determinant on both sides of Eq. (7.11) yields

det I = det E
{

BxxTBT

}

(7.29)

= det B det E
{
xxT

}
detBT

, (7.30)

because the determinant of a product of matrices equals the product of the individual de-
terminants. Since the determinant of the identity matrix det I is unity (Bartsch, 1999), this
implies that det B can be regarded as constant in the optimization problem if y is constrained
to be sphered.
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7.4 Comparison between Gradient-Based Algorithms

and the Fixed-Point Algorithm

Comparing the fixed-point algorithm in Eq. (7.31a) to the natural gradient algo-

rithm in Eq. (7.20), we conclude that the matrices diag (ζi) and diag (ξi) obviously

play the role of the step-size parameter sequence α[n] in the gradient algorithm in

Eq. (7.20), thus providing for an optimized automatic adjustment of the step size

(Hyvärinen et al., 2001).

Furthermore, the presence of the scalars ζi in the FastICA algorithm in Eq. (7.31)

makes it unnecessary to separately estimate the nature of the p. d. f.’s of the inde-

pendent components. In fact, the nonpolynomial moment in Eq. (7.12), which is

used in the gradient algorithm to discriminate between the densities p̃+
sj

and p̃−sj
,

can also be found in the denominator of the factors ζi, where it fulfills an analo-

gous task. As a consequence, the FastICA algorithm maximizing the likelihood of

the observations can be run with one fixed nonlinear function, e. g. the hyperbolic

tangent (Hyvärinen et al., 2001):

g(y) =







tanh y1

...

tanh yN







=







tanh
(
bT

1 x
)

...

tanh
(
bT

Nx
)






. (7.33)

7.5 Summary and Outlook

In this chapter, we tried to solve the problem of estimating the Independent Com-

ponent Analysis model by the maximum likelihood method. After deriving the

likelihood function, we found a way to deal with the problem of nonparametric ap-

proximation of p. d. f.’s. More specifically, two densities were shown to be sufficient

for the purposes of Independent Component Analysis.

From a computational point of view, two approaches to maximizing the like-

lihood function were followed. The first leads to the well-known Bell-Sejnowski

algorithm, while the second yields an efficient algorithm of the fixed-point form.
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8 Minimization of Mutual

Information

One approach to solving the Independent Component Analysis model is to min-

imize the statistical dependence of linear combinations of the observable random

variables xi (Comon, 1994, Amari et al., 1996, Hyvärinen et al., 2001), as expressed

by

y = Bx, (8.1)

where B is the unmixing matrix and y is the vector of linear combinations whose

dependence is to be minimized.

According to what was said in Section 3.2, it is natural to quantify the statistical

independence of y by the information-theoretic measure of mutual information

I(y). To repeat, mutual information I(y) of the components of the random vector

y is always nonnegative and zero if and only if the components yi are mutually

statistically independent, as is clear from its definition in Eq. (3.15a).

Note that if the observable data x follow the linear generative model of Inde-

pendent Component Analysis introduced in Section 5.3, the methods derived from

the approach discussed in this chapter are obviously able to provide estimates of

the original independent components s. On the other hand, even in cases where it

might not be reasonable or realistic to hypothesize any underlying model in data

generation, minimization of mutual information still yields a valuable decomposi-

tion of the data (Hyvärinen et al., 2001).

In this chapter, we reveal the connection between the minimization of mutual

information and the two approaches discussed in the previous chapters, namely

maximization of non-Gaussianity and the maximum-likelihood approach. Since

they turn out to be equivalent under certain circumstances, no new algorithms are

introduced in this chapter.
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8 Minimization of Mutual Information

8.1 Connection with Maximization of

Non-Gaussianity

The approach whereby the ICA model is estimated maximizing non-Gaussianity

(cf. Chapter 6) can be justified more rigorously than we did in Section 6.1 by

showing that this approach is intimately connected with minimization of mutual

information.

More specifically, using the formula for the differential entropy of a linear trans-

formation in Eq. (3.8) and the definition of negentropy in Eq. (3.16), we can express

the mutual information I(y) of the random vector y as

I(y) =
N∑

i=1

h(yi) − h(y) (8.2)

=
N∑

i=1

h(yi) −
(
h(x) + log |det B|

)

︸ ︷︷ ︸

h(y)

(8.3)

=
N∑

i=1

h(yi) − h(x) − log |det B| (8.4)

=
N∑

i=1

(
h(yi, Gauss) −N (yi)

)

︸ ︷︷ ︸

h(yi)

−h(x) − log |det B| . (8.5)

Moreover, for a sphered random vector y = Bx, the term log |det B| in Eq. (8.5)

is constant, as was shown in the footnote in Section 7.3. In addition, neither the

differential entropy h(x) of the mixtures, nor the (fixed) differential entropy of the

standardized Gaussian-distributed random variables yi, Gauss depends on B:

I(y) = −
N∑

i=1

N (yi) +
N∑

i=1

h(yi, Gauss)
︸ ︷︷ ︸

1
2

log(2πe)

−h(x) − log |det B|

︸ ︷︷ ︸

const.

. (8.6)

Thus, since negentropy N is always nonnegative and well suited for measuring non-

Gaussianity (cf. Section 3.3), Eq. (8.6) clearly shows that minimization of mutual

information I(y) is equivalent to maximization of the sum of non-Gaussianities of

the estimates of the independent components yi, if the estimates are constrained

to be uncorrelated and of unit variance, i. e. sphered (Hyvärinen et al., 2001).

Note, however, that as opposed to the methods that maximize non-Gaussianity,

approaches that minimize mutual information always estimate the whole set of
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independent components at the same time (Hyvärinen et al., 2001).

8.2 Connection with Maximum Likelihood

Estimation

Recall the cost function that we derived in Chapter 7 in the context of estimating

the Independent Component Analysis model by the maximum likelihood method,

reproduced at this point for convenience of presentation

IML(B) = ln |det B| + E
{

N∑

i=1

ln psi

(
bT

i x
)

}

. (8.7)

If the unknown functions psi
(si) corresponded to the true p. d. f.’s of the (estimates

of the) independent components, we could rewrite the maximum-likelihood cost

function in Eq. (8.7) as

IML(B) = log |det B| −
N∑

i=1

E
{
− log pyi

(
bT

i x
)}

︸ ︷︷ ︸

h(yi)

(8.8)

= −
(

N∑

i=1

h(yi) − log |det B|
)

, (8.9)

where we used the definition of differential entropy in Eq. (3.3b) and again matched

the bases of the logarithms.

Since the maximum-likelihood cost function IML in Eq. (8.9) and the mutual

information I(y) in Eq. (8.4) differ only in the sign and in the constant term involv-

ing the differential entropy h(x) of the input vector x, which cannot be affected

by the optimization anyway, we conclude that the approach to estimating the In-

dependent Component Analysis model by maximization of the log-likelihood IML

is equivalent to the minimization of the mutual information I(y) of the estimates

of the independent components y (Hyvärinen et al., 2001).

8.3 Summary and Outlook

Using the definitions of the various information-theoretic quantities, we showed

in this chapter the equivalence of the minimization of mutual information and

respectively the maximization of non-Gaussianity and the maximization-likelihood

estimation approach, especially if y is constrained to be sphered.
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8 Minimization of Mutual Information

Because of this close connection, the algorithms devised in the two previous

chapters can be used for minimization of mutual information as well.

Among the algorithms which maximize non-Gaussianity, though, those with

symmetric orthogonalization are the ones to be used, because in minimization

of mutual information no order is defined between the individual components.

Therefore, in the estimation process there is no reason to prefer one component to

another (Hyvärinen et al., 2001).

Alternatively, remember that mutual information I(·) is computed from differ-

ential entropies, as seen from Eq. (3.15b). Consequently, it is possible to approxi-

mate mutual information I(·) in the same way that we approximated negentropy

N in Section 3.3.2. For an example of such a proceeding consult the paper by

Amari et al. (1996); they employ the Gram-Charlier density expansion (cf. Sec-

tion 3.3.2.1), of course substituting Amari’s natural gradient (cf. Section 7.2.2) for

the conventional gradient. Conversely, Comon (1994) uses another type of den-

sity approximation, namely the so-called Edgeworth expansion. Details on both

approaches can be found in the respective paper.
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9 Tensorial Methods

In this chapter, we discuss ICA methods based on joint forth-order cumulants.

(Cumulants are discussed in Section 1.5.2.)

First, the notion of cumulant tensor and cumulant matrix is introduced. Then,

we show that diagonalization of cumulant matrices of sphered mixtures yields

estimates of the unmixing matrix of the ICA model. In this context, we treat

the JADE algorithm and the algorithm of Forth-Order Blind Identification. To

conclude, we point out the connection between tensorial methods and the FastICA

algorithm devised earlier.

9.1 Cumulant Tensor and Cumulant Matrix

Let us denote the set of all joint forth-order cumulants of the components of the

random vector x =
[

x1 · · · xN

]T

by (Cardoso and Souloumiac, 1993)

Qx = {cum (xi, xj, xk, xl) | i, j, k, l = 1, . . . , N} . (9.1)

The cumulant set Qx is in fact a tensor, but for our purposes it suffices to ap-

ply index-free notations as an extension of matrix-vector notations familiar from

linear algebra (Cardoso, 1990). Note that the cumulants are symmetric in their

arguments (Mathews and Sicuranza, 2002).

Then, the ijth entry of the (N ×N)-cumulant matrix Qz (M) associated with

an arbitrary (N ×N)-matrix M with respect to the forth-order cumulants Qz of

the random vector z is defined by (Cardoso and Souloumiac, 1993)

[

Qz (M)
]

ij
=

N∑

k=1

N∑

l=1

cum (zi, zj, zk, zl)mkl, i, j = 1, . . . , N, (9.2)

wheremkl denotes the klth element of the matrix M . Note that the transformation

Qz (M) in Eq. (9.2) is an extension of the usual multiplication of a vector q by a

matrix T , where in a completely analogous fashion, the ith entry of the resulting
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9 Tensorial Methods

vector p = Tq is given by

pi =
N∑

k=1

tikqk. (9.3)

For sphered data z, the cumulant matrix in Eq. (9.2) can be expressed in an

algebraic index-free notation. More specifically, with the definition of forth-order

cumulants in terms of moments, we can write the cumulant matrix in the equivalent

form

Qz (M ) = E
{(

zTMz
)
zzT

}
− M − MT − I tr (M ) , (9.4)

where I denotes the identity matrix and tr (M ) is the trace of the matrix M , i. e.

the sum of the elements on the diagonal of the matrix M .

9.2 Eigenstructure of the Cumulant Tensor

If the ICA model holds, the sphered mixtures can be expressed as z = W Ts,

where the matrix W T is the inverse of the orthogonal unmixing matrix. Taking

into account the properties of cumulants (cf. Section 1.5.3) and the statistical

independence of the components sp, by which cum (si, sj, sk, sl) = kurt (si) for

i = j = k = l and zero otherwise (Cardoso, 1999), we have

[

Qz (M)
]

ij
=

N∑

k=1

N∑

l=1

N∑

p=1

kurt (sp)wpiwpjwpkwplmkl

=
N∑

p=1

wpiwpj
︸ ︷︷ ︸
»

wpw
T
p

–

ij

kurt (sp)
N∑

k=1

N∑

l=1

wpkmklwpl

︸ ︷︷ ︸

wT
pMwp, quadratic form

, (9.5)

where wT
p denotes the pth row of the unmixing matrix W and

[

wpw
T
p

]

ij
stands for

the ijth element of the dyadic product of wp. Clearly, Eq. (9.5) can be expressed

in matrix form as

Qz (M ) =
N∑

p=1

kurt (sp)
(
wT

p Mwp

) (
wpw

T
p

)
(9.6a)

= W T diag
(
kurt (sp)

(
wT

p Mwp

))
W . (9.6b)
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9.2 Eigenstructure of the Cumulant Tensor

From Eq. (9.6) we see that for sphered data z, any cumulant matrix Qz (M ) is

diagonalized by the unmixing matrix W (Cardoso and Souloumiac, 1993), i. e. the

matrix

WQz (M ) W T (9.7)

is diagonal when W is an unmixing matrix of the underlying ICA model.

Eq. (9.6) suggests some kind of eigenvalue decomposition of cumulant matrices

Qz (M) so as to get the unmixing matrix W (Cardoso and Souloumiac, 1993).

In the following we first show how this can be done using just a single cumulant

matrix. Then, we present an algorithm that jointly diagonalizes several cumu-

lant matrices, thereby getting rid of the problem of potential degeneracy of the

spectrum1 of a single cumulant matrix.

9.2.1 Diagonalization of a Single Cumulant Matrix

9.2.1.1 Identity Matrix

In the simplest case, we can exploit the eigenstructure of the cumulant set by

diagonalizing a single cumulant matrix. Choosing the cumulant matrix of the

identity matrix I, we get from Eq. (9.4)

Qz (I) = E
{
‖z‖2

zzT
}
− (N + 2) I. (9.8)

Since addition of a scaled identity matrix does not affect the eigenvalue decompo-

sition in any significant way (Hyvärinen et al., 2001), diagonalization of Eq. (9.8)

essentially leads to the FOBI algorithm described in Section 9.3. Note that in this

case, the cumulant set Qz need not even be estimated as a whole (Cardoso and

Souloumiac, 1993).

For the choice of the cumulant matrix considered in this subsection, Eq. (9.6)

reads

Qz (I) = W T diag (kurt (sp)) W . (9.9)

Thus, the spectrum of the cumulant matrix Qz (I) is degenerate when the kurtoses

of all sources are not distinct. As a consequence, the eigenvalue decomposition does

not yield a suitable unmixing matrix (Cardoso and Souloumiac, 1993). These issues

will be treated in more detail in Section 9.3.

1The set of eigenvalues of a matrix is also referred to as the spectrum of the matrix.
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9 Tensorial Methods

9.2.1.2 One Arbitrary Matrix

As an alternative to diagonalizing the cumulant matrix of the identity matrix

like in the previous subsection, consider the diagonalization of a single arbitrary

cumulant matrix Qz (M ).

From Eq. (9.6), we get

Qz (M ) = W T diag
(
kurt (sp)

(
wT

p Mwp

))
W , (9.10)

i. e. the eigenvalues of the cumulant matrix Qz (M) are kurt (sp)
(
wT

p Mwp

)
.

Thus, according to Cardoso and Souloumiac (1993), the eigenvalues are distinct

with a high probability.

However, there is no guideline on how to choose the matrix M in order to guar-

antee nondegeneracy of the spectrum (Cardoso and Souloumiac, 1993, Cardoso,

1999). Moreover, the eigenvalue decomposition of a single cumulant matrix takes

into account only a part of the information contained in the whole cumulant set

(Cardoso, 1999). These drawbacks are overcome by the diagonalization of more

than one matrix described next.

9.2.2 Joint Diagonalization of Several Matrices

In order to extent the notion of diagonalization of a single matrix, consider the

cost function (Cardoso and Souloumiac, 1993)

IJADE(M,W ) =
∑

M i∈M

∥
∥diag

(
WM iW

T
)∥
∥

2
. (9.11)

Here, M is a set of K given matrices M i, i = 1, . . . , K, and the optimization is

with respect to the orthogonal matrix W . Clearly, IJADE is a measure of how well

the matrix W is able to jointly diagonalize the matrices in the set of matrices M.

When the set of matrices M involves cumulant matrices estimated from a finite

data set,2 there is no matrix W that could be able to diagonalize all matrices in the

matrix set M exactly (Cardoso and Souloumiac, 1993). Nevertheless, optimization

of the cost function IJADE yields a joint approximative diagonalization of the matrix

set (Cardoso and Souloumiac, 1993). Moreover, there is a connection between

IJADE and another popular ICA cost function based on autocumulants3 of the

2We will treat this case in a moment.
3An autocumulant is a cumulant involving only one index. In the case of forth-order cumulants,

this is equal to the kurtosis (Cardoso, 1999). On the other hand, cumulants with at least two
different indices are called cross-cumulants
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9.2 Eigenstructure of the Cumulant Tensor

estimates of the independent components (cf. Section 9.2.2.3).

Joint diagonalization of the cost function IJADE in Eq. (9.11) reliably solves the

problem of Independent Component Analysis if the set of matrices M satisfies

certain requirements. More specifically, suitable choices for the set of matrices

are (1) the parallel set and (2) the eigenset associated with the cumulant set of

sphered data. In both cases the information of the whole cumulant set is involved

in the estimation problem (Cardoso and Souloumiac, 1993).

The appeal of joint diagonalization comes from the fact that it can be realized

efficiently by an extension of the iterative Jacobi algorithm as described by Cardoso

(1999). Then, the computational complexity of diagonalizingN matrices is roughly

N times the complexity of diagonalizing a single matrix (Cardoso and Souloumiac,

1993).

9.2.2.1 Joint Diagonalization of the Parallel Set

Cardoso and Souloumiac (1993) show that optimization of IJADE by joint diago-

nalization yields a solution to the problem of Independent Component Analysis

model estimation when the set of matrices M is equal to the so-called parallel set

(Cardoso and Souloumiac, 1993)

M
p =

{
Qz

(
1k1

T
l

)
| k, l = 1, . . . , N

}
, (9.12)

where 1k denotes a column vector of length N where all elements are zero except

for the kth, which is unity. From the definition of cumulant matrices in Eq. (9.2)

we see that Qz

(
1k1

T
l

)
is in fact an N × N -matrix whose ijth entry is given by

cum (zi, zj, zk, zl). Therefore, the complete set of N 2 matrices constituting the

parallel set M
p contains the information of the full cumulant set Qz.

The algorithm is summarized in the following box.

1. Sphere the observations x by a sphering matrix V to get z = V x (cf.

Section 5.3.5)

2. Estimate the cumulant set Qz in Eq. (9.1)

3. Jointly diagonalize the parallel set M
p by optimizing the cost function

IJADE, i. e. obtain an orthogonal unmixing matrix W as

W = arg max
W

IJADE (Mp,W ) (9.13)
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9.2.2.2 Joint Diagonalization of the Eigenset

Alternatively, the joint diagonalization can be done on the so-called eigenset M
e

(Cardoso and Souloumiac, 1993) stemming from the concept of eigenmatrices.

According to Cardoso (1990), an eigenmatrix associated with the cumulant set

Qz is a matrix M such that

Qz (M ) = λM , (9.14)

where λ denotes the scalar eigenvalue corresponding to the eigenmatrix M . In

other words, an eigenmatrix is not changed by an application of the transformation

defined by the cumulant matrix, except for a scaling by λ. Then, the eigenset

M
e = {λiM i | Qz (M i) = λiM i, i = 1, . . . , N} . (9.15)

Cardoso (1990) states that among the N 2 eigenvalues associated with the cumu-

lant set Qz, only N eigenvalues are nonzero. Consequently, there exist exactly N

nontrivial eigenmatrices. Thus, once all eigenmatrices corresponding to nonzero

eigenvalues are found,4 the joint diagonalization of the cost function IJADE involves

just N matrices, instead of the N 2 matrices needed when the parallel set M
p is

used (Cardoso and Souloumiac, 1993).

In the literature the resulting algorithm is called the JADE algorithm (Joint

Approximative Diagonalization of eigenmatrices). We summarize the necessary

steps in the following box.

1. Sphere the observations x by a sphering matrix V to get z = V x (cf.

Section 5.3.5)

2. Estimate the cumulant set Qz in Eq. (9.1)

3. Compute the eigenmatrices corresponding to nonzero eigenvalues

4. Jointly diagonalize the eigenset M
e by optimizing the cost function

IJADE, i. e. obtain an orthogonal unmixing matrix W as

W = arg max
W

IJADE (Me,W ) (9.16)

4To compute the N eigenmatrices in a straightforward way, one can rearrange the elements
of the cumulant set Qz in an N2 × N2 matrix and then perform an ordinary eigenvalue
decomposition of this N 2 × N2 matrix (Cardoso and Souloumiac, 1993).
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9.3 Forth-Order Blind Identification

9.2.2.3 Connection to Related Approaches

To illustrate the connection between the joint diagonalization methods and other

approaches, consider a random vector y = Wz, where z is sphered and the

unmixing matrix W is orthogonal. If the variables of such a random vector y are

mutually statistically independent, their joint forth-order cumulants are given by

cum (yi, yj, yk, yl) =







kurt (yi) for i = j = k = l,

0 otherwise.
(9.17)

Moreover, note that the total sum of squares of the joint forth-order cumulants is

not changed by an orthogonal transformation W (Cardoso and Souloumiac, 1993).

As a consequence, a suitable cost function for ICA model estimation could be to

maximize the sum of squares of the autocumulants, i. e.

W = arg max
W

N∑

i=1

(
cum (yi, yi, yi, yi)

)2
, (9.18)

or, equivalently, to minimize the sum of squares of the cross-cumulants, i. e.

W = arg min
W

∑

ijkl 6=iiii

(
cum (yi, yj, yk, yl)

)2
, (9.19)

where the summation is over all cumulants with different indices.

Cardoso and Souloumiac (1993) prove that joint diagonalization of both the

parallel set M
p and the eigenset M

e is equivalent to optimizing the cost function

IJADE =
N∑

i=1

N∑

k=1

N∑

l=1

(
cum (yi, yi, yk, yl)

)2
(9.20)

when the unmixing matrix W is constrained to be orthogonal. Note that the

JADE cost function in Eq. (9.20) is similar to Eq. (9.18), but—as we have seen

in this Chapter—efficient methods can be devised for its optimization in terms

of joint approximative diagonalization using the Jacobi technique (Cardoso and

Souloumiac, 1993).

9.3 Forth-Order Blind Identification

The Forth-order blind identification (FOBI) algorithm, introduced by Cardoso

(1989), provides a computationally very simple approach to solving the Indepen-
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dent Component Analysis model. Its connection to the principle of diagonalization

of a single cumulant matrix was already discussed in Section 9.2.1.1.

In the FOBI algorithm, an estimate of the unmixing matrix is directly obtained

from the eigenvalue decomposition of the so-called weighted correlation matrix Ω

(Cardoso, 1989) of the sphered mixtures z, given by

Ω = E
{
zzT ‖z‖2}

. (9.21)

In fact, assuming the ICA model (cf. Section 5.3) and exploiting the properties of

the expectation operator (cf. Section 1.2), we can express the weighted correlation

matrix Ω of a sphered vector z as

Ω = E
{
zzT ‖z‖2}

= E
{

VAssT (VA)T ‖VAs‖2
}

= E
{

W TssTW
∥
∥W Ts

∥
∥

2
}

= E
{

W TssTW

(

sT WW T
︸ ︷︷ ︸

I

s

)}

= E
{
W TssTW ‖s‖2}

= E
{
W TssT ‖s‖2

W
}

= W TE
{
ssT ‖s‖2}

W . (9.22)

Moreover, using the mutual statistical independence of the components si and

the fact that the independent components si have zero-mean and unit variance

(cf. Section 5.3.4), we can transform the expected value of the weighted dyadic

product of s to yield

Ω = W T diag
(
E
{
s2

i ‖s‖2})
W (9.23a)

= W T diag
(
E
{
s4

i

}
+N − 1

)
W . (9.23b)

But Eq. (9.23b) is exactly of the form of the eigenvalue decomposition of the

weighted correlation matrix Ω, the expressions (E{s4
i } +N − 1) and the matrix

W T corresponding to its eigenvalues and its eigenvectors, respectively. As a con-

sequence, if all eigenvalues of the weighted correlation matrix Ω are distinct, the

eigenvectors of Ω put along the rows of the orthogonal unmixing matrix W solve

the ICA model estimation problem (Cardoso, 1989, Hyvärinen et al., 2001).

On the other hand, consider the case when several independent components si
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possess identical forth-order moments E{s4
i }, so that the associated eigenvalues

of the decomposition in Eq. (9.23b) are identical as well. Then, the eigenvalue

decomposition is no longer unique (Cardoso, 1989). As a consequence, the FOBI

algorithm fails to separate those independent components which have the same

forth-order moment, while the components with different forth-order moments

can still be estimated (Cardoso, 1989).

As a possible remedy, Cardoso (1989) generalizes the weighted correlation matrix

introducing a scalar nonlinear function f(·) and with it, higher than forth-order

information on the data:

Ωf = E
{
zzTf

(
‖z‖2)}

. (9.24a)

As one can show, for symmetrically distributed independent components, the

eigenvalue decomposition of this generalized weighted correlation matrix Ωf again

yields an unmixing matrix, since

Ωf = W T diag
(
E
{
s2

i f
(
‖s‖2)})

W . (9.24b)

Note that for the linear function f(u) = u, the generalized FOBI algorithm in

Eq. (9.24) reduces to the form in Eq. (9.23).

However, not even the generalized algorithm is able to separate independent

components whose distributions are completely identical, since then the eigenvalues

of the decomposition in Eq. (9.24b) will always be equal, no matter which function

f(·) we choose.

As opposed to most other algorithms presented in this thesis, FOBI is not an

iterative algorithm. Rather, the eigenvalue decomposition of the weighted cor-

relation matrix is computed only once, immediately yielding the estimate of the

unmixing matrix.

From a computational point of view, the complexity of the FOBI algorithm is

essentially that of a sphering transformation.

Computer Experiment 9.1 (Forth-Order Blind Identification)

In this computer experiment, we investigate the performance and the limitations

of the FOBI algorithm in Eq. (9.23) for the two-dimensional case.

To this end, we consider two different mixing environments. More specifically,

in Case 1, two independent components s with different p. d. f.’s were involved

(standardized uniform density and a standardized trapezoidal p. d. f., respectively).

On the other hand, the independent components in Case 2 are both uniformly
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distributed and therefore have identical forth-order moments.

In both cases, K = 30 000 data samples x are generated according to the Inde-

pendent Component Analysis model x = As. The entries of the mixing matrix

A are uniformly distributed around the origin. The mixtures are then sphered

using the method described in Section 5.3.5.2, and estimates of the independent

components y are computed with the FOBI algorithm.

For both cases, the experiment is repeated 20 times, each time with new samples

of the components s and a new mixing matrix A.

We rate the separating algorithm by means of the performance index P pro-

posed, e. g., in Hyvärinen et al. (2001)

P =
N∑

i=1

(
N∑

j=1

|pij|
maxk |pik|

− 1

)

+
N∑

j=1

(
N∑

i=1

|pij|
maxk |pkj|

− 1

)

. (9.25)

Here, the pij are the coefficients of the matrix

P = WVA, (9.26)

where W denotes the estimated unmixing matrix and V is the matrix of the

sphering transformation. Remember from Section 5.3.4 that the matrix P ideally

consists of only one entry per row and column, in which case P is identically zero.

Otherwise, P is positive.

kurt (s1) kurt (s2) P̄ maxk Pk

Case 1 −1.200 −0.816 0.096 0.233
Case 2 −1.202 −1.202 2.297 3.947

Table 9.1: Performance of FOBI algorithm operating in two different mixing envi-
ronments.

The results of the computer experiment are summarized in Tab. 9.1, were P̄
denotes the performance index averaged over the twenty repetitions. In Case 1,

since the kurtoses of the independent components are different, the FOBI algorithm

is able to yield acceptable estimates, which is confirmed by an average performance

index of small absolute value. Conversely, in Case 2 both kurtoses are equal, and

the algorithm fails completely. “
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9.4 Modified Power Method for Diagonalization of

Eigenmatrices

Let us consider in more detail the concept of eigenmatrices introduced in Sec-

tion 9.2.2.2. In fact, the rows of the unmixing matrix can be obtained directly

from the eigenvalue decomposition of eigenmatrices.

Using Eq. (9.6), we immediately verify that the eigenmatrices of the cumulant

set Qz are in fact given by the rank-one matrices wiw
T
i constructed from the ith

row wT
i of the unmixing matrix W . The corresponding eigenvalues are given by

the kurtoses kurt (si) of the independent components si. Thus, (Hyvärinen et al.,

2001, Cardoso, 1990)

Qz

(
wiw

T
i

)
= kurt (si) wiw

T
i , i = 1, . . . , N. (9.27)

Remember that only exactlyN eigenvalues of the cumulant set are nonzero. There-

fore, when we have found a matrix to be an eigenmatrix wiw
T
i of the cumulant

tensor, an eigenvalue decomposition of this eigenmatrix yields an estimate for one

independent component.

If all eigenvalues of the cumulant set are distinct, every eigenmatrix corresponds

to a different row of the unmixing matrix. On the other hand, let us inspect

the case that the algebraic multiplicity Ai of an eigenvalue λi is greater than

unity. Then, there are Ai eigenmatrices M i associated with the eigenvalue λi.

These eigenmatrices M i are in general linear combinations of Ai vectors wi(j),

j = 1, . . . ,Ai, that belong to this eigenvalue λi. Thus,

M i =

Ai∑

j=1

cjwi(j)w
T
i(j). (9.28)

Consequently, also in the case of equal eigenvalues, we get the desired projectors

wi(j) by an eigenvalue decomposition of the matrices M i (Hyvärinen et al., 2001).

Interestingly enough, Hyvärinen et al. (2001) show that a power method5 tai-

lored to the specific structure of the problem at hand leads exactly to the FastICA

algorithm with the cubic function that maximizes the absolute value of the non-

Gaussianity of the projection yi (cf. Section 6.2.2). Consult the reference for more

details.

5The power method is a simple iterative method for finding the eigenvector of a matrix corre-
sponding to the eigenvalue with the greatest absolute value. An arbitrary starting vector is
iteratively transformed by the matrix whose eigenvector we wish to compute and normalized
to unit length until convergence (Kreyszig, 1999).
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9.5 Summary

In this chapter, we discussed methods for solving the Independent Component

Analysis model estimation problem that rely on direct evaluation of forth-order

cumulants.

We showed that the eigenvalue decomposition of cumulant matrices directly

gives the desired unmixing matrix. Note that throughout this chapter, only

sphered mixtures were considered, which once more shows the utility of spher-

ing as a preprocessing step in ICA. Different algorithms result from the specific

choice of which cumulant matrix or which cumulant matrices to take in the diag-

onalization.

More specifically, choosing the cumulant matrix of the identity matrix leads to

the computationally simple FOBI algorithm. However, care must be taken when

several independent components have similar distributions.

On the other hand, no such problems arise when we use joint approximative

diagonalization of several cumulant matrices. This approach, known as the JADE

algorithm, has a computationally efficient implementation in terms of Jacobi ro-

tations.

To conclude, we saw that successive eigenvalue decomposition of cumulant eigen-

matrices leads to the FastICA algorithm derived earlier, which gives another jus-

tification of the intuitive principle of maximization of non-Gaussianity.
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List of Symbols

A Square, non-singular mixing matrix
A Algebraic multiplicity
α Step-size parameter in gradient algorithms
B Nonsingualar unmixing matrix
b Bias of an estimate
β Positive number in step-size parameter sequence
Cij Covariance of the random variables xi and xj

Cx Covariance matrix of the random vector x

cum (x) Cumulant of the random variable x
D Diagonal matrix of variances
∆w[n] Newton correction
δabs, δrel Accuracy based on the absolute respectively the relative error
det Determinant
diag (· · · ) Diagonal matrix consisting of the values given as arguments
E Orthogonal matrix of Eigenvectors
E{·} Mathematical expectation
ε[n] Departure of the solution in iteration step n from the true solution
ηx Mean value of the random variable x
ηx Mean vector of the random vector x

Gx Group of random variables x

grad Vector of partial derivatives of multivariate function
γ Estimate of the kurtosis
H(x) Entropy of the random variable x
HI(·) Hessian matrix of the function I(·)
h(x) Differential entropy of the random vector x

I(x) Mutual information of the random vector x

I Cost function in optimization problems
I Identity matrix
Jg(x) Jacobian matrix of the vector function g

j Imaginary unit
K Number of available samples
kurt (x) Kurtosis of the random variable x
L (ϑ) Log-likelihood function
` (ϑ) Likelihood function
λ Eigenvalue
λMP Lagrange multiplier
ln Natural logarithm
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M Number of unknown sources in general unmixing environment
M Set of matrices
M

p, M
e Parallel set and Eigenset, respectively

mom (x) Moment of the random variable x
N (x) Negentropy of the random vector x

N Number of independent component estimates in ICA
n Iteration step in iterative algorithms
ν Standardized Gaussian-distributed random variable
P Performance index used in ICA algorithm rating
px(x) Probability Density Function of the random vector x

Qx Set of joint forth-order cumulants of the random vector z

Qz (M ) Cumulant matrix, transformation of matrix M with respect to
the cumulants of z

Rij Correlation between the random variables xi and xj

Rx Correlation matrix of the random vector x

R≥0 Set of real nonnegative numbers
ρ Nonpolynomial moment in maximization of non-Gaussianity
s Vector of mutually statistically independent random variables
σ2

x Variance of the random variable x
sign (x) Absolute value of x
tr (M) Trace of matrix M , i. e. sum of elements on the diagonal of M

ϑ Parameter vector

ϑ̂ Estimate of a parameter vector
V Sphering transformation matrix
W Orthogonal unmixing matrix
w∗ Fixed-point in fixed-point iteration
x Vector of linear combinations of mutually statistically independent

random variables
y Estimates of independent components
Φ(·) Characteristic function
φ(·) Vector function of nonlinear sigmoid functions in Bell-Sejnowski

algorithm
φ(·) Nonlinear sigmoid function in Bell-Sejnowski algorithm
ϕ(·) Update rule
ψ Angle of a unit-norm vector and the positive x-axis in the

twodimensional plane
χ Nonzero real number to show an ambiguity in ICA model

estimation
ζi, ξi Scalars in fixed-point iteration, maximum likelihood method
z Vector of sphered combinations of mutually statistically

independent random variables, i. e. the components of z are
mutually uncorrelated and have unit variance

Ω Weighted correlation matrix in FOBI algorithm
Ωf Weighted correlation matrix in generalized FOBI algorithm
ωi Independent variables in characteristic function
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